

(An Autonomous Institution)

Managed by I.I.E.T Society, Approved by AICTE, New Delhi,
Affiliated to Anna University, Chennai,
Accredited by NAAC with 'A' grade and NBA for programs applied,
Recognized by UGC with 2(f) & 12(B) status

M.E. COMPUTER SCIENCE AND ENGINEERING CURRICULUM AND SYLLABUS REGULATIONS 2024

CHOICE BASED CREDIT SYSTEM

Powered by

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Prof. K. R. Sundararajan, a well-known educationalist, established the Indian Institute of Engineering Technology (I.I.E.T) society in the year 1947 in Chennai. The total area of 14 acres was purchased with enormous hardship and was donated to the IIET Society for the cause of education. The society's main objective is to provide quality education and it has been ensured since 1951.

The HET Society has the following to its credit:-

- An uninterrupted and continuous education since 1951 in its premises
- All Colleges run by the institution are ranked among the top 5 top 10 programs in Tamil Nadu
- 350 KW Solar Power Plant Generating upto 70% of its electricity needs
- Significant portion of the students are first generation learners
- Campus holds approximately 7000 plus students from the ages of 4 to 35 plus.
- Large Green Campus in the heart of the city of Chennai, Tamil Nadu
- In existence since 1947 Completed 75 years
- Targeting to be Carbon Neutral from the end of the year 2025

The society currently has the following institutions:-

- Meenakshi Sundararajan Engineering College(MSEC) established in 2001 & affiliated to Anna University offering engineering programs with about 2000 plus students.
- Meenakshi Sundararajan School of Management(MSSM) established in 2000 & affiliated to University of Madras offering MBA programs with about 100 plus students.
- The NEST School (TNS)- established in 2022 offering IB (International Baccalaureate) & CAIE (Cambridge) boards.

All of the institutions have earned an enviable name and are rated as one among Top 10 colleges in the Tamil Nadu state in their respective programs. Efforts are on to make the campus carbon neutral in 2 years (end of 2025) by using our community of staff and students.

Meenakshi Sundararajan Engineering College (MSEC) was established by the IIET Society in 2001. MSEC is defined by two keywords "Industry Ready" & "Vibrancy". Creating a new generation of self- actualized learners is our raison d'etre. If children are our future, then education is the key to their future. When education is shaped around them, and not the other way around, we are laying the foundation for a future/world where creativity, diversity and caring, independent-thinkers thrive. Our curricula thrive on continuous learning while interacting with and incorporating real-world situations and challenges.

MSEC's Hallmark of Quality

- Affiliated to Anna University, Chennai
- Approved by AICTE, New Delhi
- Accredited by NBA for programs in:
 - Civil Engineering
 - Computer Science and Engineering
 - Electronics and Communication Engineering
 - Mechanical Engineering
 - Electrical and Electronics Engineering
 - Information Technology
- Accredited by NAAC with a prestigious "A" grade
- Declared under Section 2(f) and 12(B) of the UGC Act
- Conferred with Autonomous status for 10 years (2024-25 to 2033-34) by the University Grants Commission (UGC) on February 1, 2024
- Meenakshi Sundararajan Innovation and Incubation Centre (MSIIC)
- Meenakshi Sundararajan Career Development Cell (MSCDC)
- MSEC Research Centre (MSEC RC)
- Center of Excellence Industry Tie Up in Specialized Labs
- Industry MOU's 200 Plus

Vision of the Institute

To impart state-of-the-art technical education, including sterling values and shining character, producing engineers who contribute to nation building thereby achieving our ultimate objective of sustained development of an unparalleled society, nation and world at large.

Mission of the Institute

Meenakshi Sundararajan Engineering college, Chennai constantly strives to be a Centre of Excellence with the singular aim of producing students of outstanding academic excellence and sterling character to benefit the society, our nation and the world at large.

To achieve this, the college ensures

- Continuous upgradation of its teaching faculty to ensure a high standard of quality education and to meet the ever-changing needs of the society
- Constant interaction with its stakeholders
- Linkage with other educational institutions and industries at the national and international level for mutual benefit
- Provision of research facilities and infrastructure in line with global trends
- Adequate opportunities and exposure to the students through suitable programs, to mould their character and to develop their personality with an emphasis on professional ethics and moral values.

We offer following courses:

S.No	Course	Intake		
	Undergraduate courses in B.E / B. Tech			
01	B.E Civil Engineering	60		
02	B.E Computer Science and Engineering	120		
03	B.E Electronics and Communication Engineering	120		
04	B.E Electrical & Electronics Engineering	60		
05	05 B.E Mechanical Engineering			
06	B. Tech Information Technology	120		
07	B. Tech Artificial Intelligence & Data Sciences	120		
	Postgraduate courses in M.E / M. Tech			
08	M.E. Construction Engineering and Management	18		
09	M.E. Computer Science and Engineering	18		
10	M.E. Embedded System Technologies	18		
11	M.E Energy Engineering	18		

DEPARTMENT OF HUMANITIES AND SCIENCE

The H&S Department stands out for its commitment to providing a well-rounded academic experience for first-year students. Covering key subjects like Physics, Chemistry, Mathematics, English, and Tamil. The department boasts a high pass percentage in semester exams, a testament to the hard work and dedication of the faculty. This year, the department enhanced offerings with industry and alumni talks, foreign language courses, engaging games, and specialized coaching for AEP and ICS. Additionally, the department introduced an industry-oriented and department-specific syllabus to better prepare students for future challenges and opportunities

DEPARTMENT OF CIVILENGINEERING

The Civil Engineering Department at our college, established in 2002, is a beacon of academic excellence and research innovation. Offering both undergraduate program and postgraduate program in M.E. Construction Engineering and Management, the department is committed to integrating advanced technologies and sustainable practices into its curriculum. The department boasts state-of-the-art laboratories and strong industry collaborations. Graduates of the department have made significant contributions to civil engineering, both nationally and internationally, and continue to shape the future of the discipline through unwavering commitment to excellence.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

The Department of Computer Science and Engineering was established in 2001. It has its mission to inculcate innovative thinking and analytical abilities in addition to imparting quality education in the theory and application of Computer Science and Engineering. The department offers UG and PG programmes with State-of-the-art Computer laboratories equipped with high end hardware and software packages provided with high-speed leased line connectivity. The department takes pride in its academic excellence and outstanding placement records. It has consistently produced 68 university rank holders till 2023 batch and accredited by National Board of Accreditation.

DEPARTMENT OF ELECTRICALAND ELECTRONICS ENGINEERING

The Electrical and Electronics Engineering Department, established in 2003, is expanding its offerings to M.E. program in Embedded System Technologies from the 2024-25 academic year. With a focus on knowledge - based training, the department faculty empowers students with a deep understanding of concepts and industry - ready skills. The department forged partnerships with 22 companies through MOUs, facilitating collaboration and knowledge exchange.

The Electrical Technocrats Association (ETA) is a vibrant platform for technical activities, including the publication and showcasing of newsletters by staff and students every fortnight. Our mission is to drive technological advancements, foster research, and address industry needs.

DEPARTMENT OF MECHANICAL ENGINEERING

Meenakshi Sundararajan Engineering College inaugurated the Department of Mechanical Engineering in the academic year 2011-12. The department has well qualified faculties with excellent teaching, training and industrial experience. It has state-of-the-art laboratories which include VMC, CNC Wire Cut, Spark Erosion, 3D CMM etc catering to academic, consultancy and research requirements. The department's endeavor is to develop its students to be industry ready when they graduate. Students of mechanical engineering department gain industrial exposure and are prepared to face future challenges by carrying out their Final Year Project work in various PSU/Private sectors as per their field of interest relevant to their program. The department has a memorandum of understanding with various Institutions, Industries and Research organizations for collaborative research and development work. There is a huge potential in the department for Consultancy as well as Technology and Product incubation.

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

The Department of Electronics and Communication Engineering, established in 2001, has grown significantly increasing its sanctioned intake from 60 to 120 in 2010. With NBA accreditation, the department is committed to delivering quality education, producing graduates who excel technically, socially, and professionally. Its state-of-the-art infrastructure, featuring ICT-enabled classrooms and advanced laboratories with cutting-edge tools like Cortex M4, Spartan 6, IoT kits, MATLAB, Cadence and PSPICE that supports academic excellence.

The Department's industry linkages with renowned organizations including ISRO, DRDO, NLTVC, and Ericson enhance students' technical skills through interactive events.

The Department's achievements include academic excellence, impressive placement records, and students' accomplishments in sports, arts, and culture, with alumni globally represented in top companies like Intel, Yahoo, and Apple.

DEPARTMENT OF INFORMATION TECHNOLOGY

The department of Information Technology was started in the year 2001 with an intake of 60 students focusing on the area. The department has won laurels to to the college. The department constantly strives with the singular aim of producing students with outstanding academic excellence and sterling character to benefit the society, our nation and the world at large. The department's commitment to high academic standards and successful student placements. It has consistently produced 65 university rank holders till 2023 batch and accredited by National Board of accreditation. Campus Agreement has been signed with leading software and hardware giants like Microsoft, IBM, Adobe and HP. The department has received a certificate partnership as a "Center of Excellence" with Virtusa Technology.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

The Department of Artificial Intelligence & Data Science was established in 2021 with an initial intake of 60 students, which was subsequently increased to 120 in 2024. Our department boasts a team of highly qualified, experienced, and competent faculty members and features spacious infrastructure with modern amenities, including six well-equipped computer laboratories with backup and internet facilities. We emphasize continuous knowledge enrichment through seminars, guest lectures, workshops, and skill enhancement programs for both students and faculty, and engage in meticulous academic planning to ensure a well-structured approach to each semester. Additionally, our student-driven club, serves as an incubation center, nurturing innovative ideas and fostering creativity.

INTERNAL QUALITY ASSURANCE CELL (IQAC)

MSEC established the Internal Quality Assurance Cell (IQAC) in 2016 to develop and implement quality standards and benchmarks in key performance areas. In alignment with the National Education Policy (NEP) 2020 and subsequent reforms, the IQAC has been further strengthened to ensure compliance with the new policy directives.

Through IQAC, the institute strive to:

- Maintain and enhance the quality of education and services
- Align with our institution's vision and mission
- Foster a culture of continuous improvement and excellence
- Ensure accountability and transparency in institutional functioning
- Promote innovative practices in teaching, learning, and research
- Develop and implement effective quality benchmarks and parameters
- Facilitate student-centered learning and feedback mechanisms
- Enhance faculty development and capacity building
- Strengthen industry-academia partnerships and collaborations
- Ensure efficient governance and administrative processes
- Promote a culture of sustainability and social responsibility
- Facilitate accreditation and ranking processes
- Identify and mitigate quality assurance risks

CONTROLLER OF EXAMINATION

The institution, granted autonomous status by UGC and Anna University from the academic year 2024-2025, has established the Controller of Examinations (COE) office to oversee assessment processes with confidentiality, ensuring quality and standards. The COE conducts fair examinations, declares results, and manages examination activities for Internal Assessment Tests (IATs) and Semester End Examinations (SEE). Their yearly schedule includes planning, coordinating, conducting, evaluating, and reviewing exams, as well as issuing certificates and transcripts. The COE ensures smooth conduct, maintains exam integrity, and coordinates with stakeholders, adapting to the institution's specific needs and exam cycle.

MEENAKSHI SUNDARARAJAN RESEARCH CENTRE(MSRC)

The MSEC Research Centre has a steadfast commitment to fostering a strong research culture. It empowers students and faculties in their intellectual exploration and discovery. The center aims to advance knowledge, drive neoteric innovation, and contribute to the broader academic and industrial fraternity ultimately aimed at uplifting humankind.

THE MEENAKSHI SUNDARARAJAN CAREER DEVELOPMENT COMMITTEE (MSCDC)

The Meenakshi Sundararajan Career Development Committee (MSCDC) is a strategic group dedicated to fostering students' professional growth and development. Our mission is to support students in achieving their career goals, fostering a culture of professional growth and development.

The MSCDC plays a vital role in aligning individual career goals through various initiatives, including:

- 1. Career Pathways
- 2. Specialised Expert Talk & Guidnace on Different Career Pathways
- 3. Higher Education Awareness Sessions on various Geographical Locations
- 4. University Fairs
- 5. Training / Coaching Programs for different Competitive Exams
- 6. Repository / Text Books for various Competitive Exams

By providing a career pathway, we help students understand the opportunities available to them and what is required to achieve their career goals. We encourage students as they navigate their professional journey, providing them with the tools, knowledge, and opportunities needed for successful career development.

OFFICE OF STUDENTS AFFAIRS

Our mission is to create a supportive and inclusive educational environment that empowers students to succeed in their academic, personal, and professional lives. We achieve this by:

- Providing individualized support and responding to student needs
- Fostering a culture of academic integrity and excellence
- Promoting personal hygiene, cleanliness, discipline and sprucing
- Encouraging a moral code of conduct and respect for others
- Cultivating a sense of campus decency and decorum
- Modeling exemplary behavior and attitudes

By fulfilling these responsibilities, the institution aims to inspire students to become responsible, successful, and compassionate individuals who make a positive impact in their communities.

COLLEGE COUNSELING SERVICES

College counseling services are essential in supporting students' overall well-being and academic success. These services often encompass various areas, including healthy mind well-being, career guidance, and academic counseling. Here's a breakdown of the typical counseling services available for college students in the institution:

Individual Counseling: One-on-one sessions with RCI registered counselors or psychologists to address personal issues such as stress, anxiety, depression, relationship problems, and any other psychological concerns.

Group Counseling: Support groups where students with similar issues can share experiences and strategies for coping in a safe and supportive environment.

Crisis Intervention: Immediate support for students in distress, trauma response, and any emergency psychological concerns.

TRAINING AND PLACEMENT CELL

Meenakshi Sundararajan Engineering College training and placement cell is committed to providing exceptional placement opportunities for its students. The Placement Cell takes meticulous efforts to ensure that students are recruited by topnotch companies in the industry.

The training pathway is established starting from the first semester with 180 Hours of Placement training which includes Communications Skills, Aptitude Training. Specialised Programming, Guidance on Certifications, Projects, Competitions, Grooming, Etiquette, Group Discussion and Mock Interviews.

The Placement Cell functions under the leadership of Placement Officer, Faculty representatives and Coordinators from each department. The Cell's ultimate aim is to achieve 100% placement. Its Other Functions include

- 1. Implementation of the training pathway at appropriate semesters
- 2. Industry Talks
- 3. Alumni Talks
- 4. Arranging Internships & Projects
- 5. Centers of Excellence with Industry
- 6. Industry Specialised training & guidance

This comprehensive training empowers students to face the campus interviews with confidence through enhancing their employability skills for a successful future.

DEPARTMENT OF PHYSICAL EDUCATION

Our college campus boasts an array of sports facilities, including

- Basketball Court
- Badminton Court
- Pickle Ball Court
- Volleyball
- Cricket/Foot Ball/Athletics Ground
- Tennis Court
- Kho Kho

The institution is much dedicated in nurturing the talent through specific college sports teams:

- Expert coaching and mentorship
- Formation of new sports teams
- Dedicated Sports Hour (1 hour/week)
- Regular Sports Day events that are meticulously planned for maximum student participation.

DEPARTMENT OF SAFETY AND SECURITY

MSEC's Safety Department include the Chief Security Officer (Retd. Lt. Col), Trained & Certified Safety Officers (18) and Chief Safety Officer.

The department ensures a secure and hazard-free environment within the campus through:

- Monitoring all areas of the campus to ensure a secure environment
- Conducting daily reviews and maintaining a register to track and address any safety issues
- Performing maintenance tasks such as securing compound walls, replacing damaged fencing, and ensuring proper drainage
- Educating the community through regular safety awareness programs and training sessions
- Organizing fire drills and evacuation procedures to prepare for emergencies
- Identifying and mitigating potential hazards to prevent accidents
- Developing and implementing comprehensive safety policies to guide the community
- Continuously monitoring CCTV cameras to quickly respond to any security incidents

The department's proactive approach helps to prevent accidents, minimizes risks, and fosters a culture of safety among students, staff, and faculty members.

MEENAKSHI SUNDARARAJAN INNOVATION AND INCUBATION CENTRE (MSIIC)

Meenakshi Sundararajan Innovation and Incubation Centre (MSIIC) is a dynamic and forward-thinking organization dedicated to fostering innovation, entrepreneurship, and skill development etc. Our center serves as a catalyst for a transformative change - providing aspiring entrepreneurs with the resources, mentorship, and support that is needed to turn their ideas into successful ventures. MSIIC is dedicated to promoting entrepreneurship and an innovative mindset among students and entrepreneurs at institutions. Through mentorship MSIIC helps to develop talents and support their initiatives, provide knowledge on market access and funding, and empower individuals to identify opportunities, take risks, and create positive change. The institution solely believes in entrepreneurship as a catalyst for innovation and societal impact, providing resources and a supportive environment for individuals to thrive and make a difference in their communities and beyond. Its activities include

- 1. Managing the 100 Seat Innovation & Incubation Center
- 2. Guidance to both Internal & External Start-ups from Ideation to Funding
- 3. Competitions Identification & Mentoring
- 4. Conducting Competitions :- 30 Hour Hackathons, All India Hackathons etc.
- 5. Managing Student Clubs
- 6. Art & Music Festival
- 7. Skill Development / Value Added Courses
- 8. Societal Beneficial Projects

MSEC STUDENTS CLUBS

MSEC Students Clubs were initiated with the objective to provide a platform for students to discover, showcase and improve their interests, strengths and passion. There are 7 clubs in our college namely, AI Epoch Club, Eco Design Club, Adyant Coding Club, Renewables Club, Nodenova IOT Club, Dev Dynasty Web App Development Club and Product Development Club. Clubs foster vibrant student community in the campus by conducting variety of events and activities which include workshops, seminars, technical and non-technical events, campus benefit projects, long term projects such as SAE Baja etc that cater to diverse interests. Clubs help the students to collaborate with different disciplines and exchange knowledge with peer groups.

Vis	sion of the department	Mission of the department			
Compu Engine educati activitie inculca prepari industri	ering by imparting quality ion, encouraging research	 To provide quality education in theory and application of Computer Science and Engineering To inculcate analytical thinking and innovation within students to become technically competent professionals. To prepare students to excel in competitive and challenging careers. To generate socially responsible citizens with ethical values to face industrial and societal challenges. To promote research in the emerging areas of technology convergence. 			
	PROGRAM OUTCOME	S (PO) and PROGRAM SPECIFIC OUTCOME (PSO)			
PO1	An ability to independently work to solve practical prob	carry out research /investigation and development lems.			
PO2	An ability to write and prese	ent a substantial technical report/document.			
PO3		demonstrate a degree of mastery over the area as per ogram. The mastery should be at a level higher than the riate bachelor program			
PSO1		develop system application software for distributed and ronments in varying domains and platforms.			
PSO2					
PSO3	•	utomation system and design algorithms that explore the offs involved in digital transformation.			

Curriculum for I to IV semesters

SEMESTER I

SL.	COURSE	COURSE TITLE	CATEGORY	ТСР		PERIOD PER WE		CREDITS
NO.	CODE	OCCINCE THEE	GAILGORI		L	T	P	- OKEDITO
	<u> </u>	<u> </u>	THEORY					
1	P24MA102	Applied Probability and Statistics for Computer Science Engineers	FC	60	3	1	0	4
2	P24CS101	Advanced Data Structures and Algorithms	PCC	45	3	0	0	3
3	P24CS103	Network Technologies	PCC	45	3	0	0	3
4	P24CS104	Principles of Programming Languages	PCC	45	3	0	0	3
5	P24RM101	Research Methodology & IPR	RMC	30	2	0	0	2
6	P24AC101	Audit Course – I Disaster Management	AC	30	2	0	0	0
		THEOF	RY CUM PRAC	TICAL				
7	P24CS102	Database Practices	PCC	75	3	0	2	4
			PRACTICAL					
8	P24CS105	Advanced Data Structures and Algorithms Laboratory	PCC	60	0	0	4	2
		TOTAL		390	19	1	6	21

SEMESTER II

SL. NO.	COURSE	COURSE TITLE	CATEGORY	ТСР	PERIODS PER WEEK		CREDITS	
NO.	CODE				L	T	Р	
		Т	HEORY					
1	P24CS204	Advanced Software Engineering	PCC	45	3	0	0	3
2		Professional Elective I	PEC	45	3	0	0	3
3		Professional Elective II	PEC	45	3	0	0	3
4	P24AC201	Audit Course - II	AC	30	2	0	0	0
		THEORY C	UM PRACTICA	L				
5	P24CS201	Machine Learning	PCC	75	3	0	2	4
6	P24CS202	Internet of Things	PCC	75	3	0	2	4
7	P24CS203	Multicore Architecture and Programming	PCC	75	3	0	2	4
	1	PR	ACTICAL		I			
8	P24CS205	Term Paper Writing and seminar	PCC	30	0	0	2	1
9	P24CS206	Software Engineering Laboratory	PCC	30	0	0	2	1
		TOTAL		450	20	0	10	23

SEMESTER III

SL.	COURSE	COURSE TITLE	CATEGORY	ТСР		ERIOD ER WE		CREDITS
NO.	CODE				L	Т	Р	
		Т	HEORY					
1	P24CS301	Security Practices	PCC	45	3	0	0	3
2		Professional Elective III	PEC	45	3	0	0	3
3		Open Elective	OEC	45	3	0	0	3
		THEORY (CUM PRACTICA	\L				
4		Professional Elective IV	PEC	75	3	0	2	4
	PRACTICAL							
5	P24CS302	Project Phase I	EEC	180	0	0	12	6
		TOTAL		390	12	0	14	19

SEMESTER IV

SL.	COURSE	COURSE TITLE	CATEGORY	ТСР		ERIOD R WE		CREDITS
NO.	CODE				L	Т	Р	
		PF	RACTICAL					
1	P24CS401	Project Phase II	EEC	360	0	0	24	12
		TOTAL		360	0	0	24	12
	OVERALL TOTAL							75

^{*}Mandatory Course is a Non-credit Course

CATEGORY OF COURSES AND CREDIT DISTRIBUTION

S.	Subject Area	Cr	Total Credits			
No.	Subject Area	1	2	3	4	Credits
1	FC	04	00	00	00	04
2	PCC	15	16	03	00	34
3	PEC	00	06	07	00	13
4	RMC	02	00	00	00	02
5	OEC	00	00	03	00	03
6	EEC	00	01	06	12	19
7	AC	V	√	00	00	00
	Total	21	23	19	12	75

FC - Foundation Courses

PCC - Professional Core Courses

PEC - Professional Elective Courses

RMC - Research Methodology and IPR Courses

OEC - Open Elective Courses

EEC - Employability Enhancement Courses

AC - Non-Credit/Audit Course

_					1				
P2	4MA102	APPLIED PROBABILITY AND STATISTICS FOR COMPUTER SCIENCE ENGINEERS	L	T	Р	С			
		COMPUTER SCIENCE ENGINEERS	3	1	0	4			
Course Objectives									
1	1 To encourage students to develop a working knowledge of the central ideas of Linear Algebra.								
2	To enable s	tudents to understand the concepts of Probability and Ran	idom Va	ariables.					
3		and the basic probability concepts with respect to two dime the relationship between the random variables and the sign							
4	To apply the	e small / large sample tests through Tests of hypothesis.							
5	To enable the components	ne students to use the concepts of multivariate normal dist s analysis.	ribution	and pri	ncipal				
UNIT	I LINEAR	ALGEBRA			12				
gener	alized eigen	orms – Inner Products – Eigenvalues using QR transforma vectors – Canonical forms – singular value decomposition uare approximations.							
UNIT	II PROBABI	LITY AND RANDOM VARIABLES			12				
Proba	bility function	ns of probability – Conditional probability – Baye's theorem n – Moments – Moment generating functions and their prop m, Exponential, Gamma and Normal distributions – Function	perties -	– Binom	ial, Pois	son,			
UNIT	III TWO DIM	ENSIONAL RANDOM VARIABLES			12				
		 Marginal and conditional distributions – Functions of two ssion curve – Correlation. 	-dimens	sional ra	ndom				
UNIT	IV TESTING	OF HYPOTHESIS			12				
Chi so		ions – Type I and Type II errors – Small and Large sample distributions for testing of mean , variance and proportions dness of fit.							
UNIT	V MULTIVA	RIATE ANALYSIS			12				
its pro		nd matrices – Mean vectors and covariance matrices – Muncipal components – Population principal components – Publes.							
		TOTAL PE	RIODS		60				
		Course Outcomes							
At the	e end of the	course, the student will be able to							
CO1	apply the co	oncepts of Linear Algebra to solve practical problems							
CO2	use the idea	as of probability and random variables in solving engineering	ng probl	ems.					
CO3		vith some of the commonly encountered two dimensional r r a possible extension to multivariate analysis.	andom	variable	s and b	е			
CO4	use statistic	al tests in testing hypotheses on data.							
CO5	develop critical thinking based on empirical evidence and the scientific approach to knowledge								

(An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS

REFERENCES

- 1. Dallas E Johnson, "Applied multivariate methods for data Analysis", Thomson and Duxbury press, Singapore, 1998.
- 2. Richard A. Johnson and Dean W. Wichern, "Applied multivariate statistical Analysis", Pearson Education, Fifth Edition, 6th Edition, New Delhi, 2013.
- 3. Bronson, R., "Matrix Operation" Schaum's outline series, Tata McGraw Hill, New York, 2011.

- 4. Oliver C. Ibe, "Fundamentals of Applied probability and Random Processes", Academic Press, Boston, 2014.
- 5. Johnson R. A. and Gupta C.B., "Miller and Freund's Probability and Statistics for Engineers", Pearson India Education, Asia, 9th Edition, New Delhi, 2017.

			e strength of corre	O Mapping elation) 3-Strong rogramme Specif		
	PO1	PO2	PO3	PSO1	PSO2	PSO3
CO1	1	2	3	-	-	1
CO2	3	-	2	2	-	3
CO3	-	-	1	-	3	2
CO4	2	1	3	2	2	2
CO5	2	2	1	-	1	2
AVG	2	1.67	2	2	2	2

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department: Computer Science and Engineering, R2024, CBCS

Da	24CS101	ADVANCED DATA STRUCTURES AND ALGORITHMS	L	T	Р	С
P2	2405101		3	0	0	3
		Course Objectives				
1	To understa	and the usage of algorithms in computing				
2	To learn an	d use hierarchical data structures and its operations				
3	To learn the	e usage of graphs and its applications				
4	To select a	nd design data structures and algorithms that is appropriate	for pro	oblems		
5	To study at	out NP Completeness of problems.				
UNIT ANAL	I ROLE C YSIS	F ALGORITHMS IN COMPUTING & COMPLEXITY			9	
Avera algori	ge and wors	rithms as a Technology -Time and Space complexity of algost- ct-case analysis-Asymptotic notation-Importance of efficient am performance measurement - Recurrences: The Substitute lethod- Data structures and algorithms				alysis.
UNIT	II HIERARC	HICAL DATA STRUCTURES			9	
Fibon Bound	acci Heaps: ding the max	rees – Deleting a key from a B-Tree- Heap – Heap Implement structure – Mergeable-heap operations- Decreasing a key a simum degree.		•	node-	
UNIT					9	
Topol Spanr Sourc	ogical Sort - ning Tree – l e Shortest p	n Algorithms: Representations of Graphs – Breadth-First Sea - Strongly Connected Components- Minimum Spanning Trea Kruskal and Prim- Single-Source Shortest Paths: The Bellma Paths in Directed Acyclic Graphs – Dijkstra's Algorithm; Dyna Phortest Paths and Matrix Multiplication – The Floyd-Warshal	es: Gr an-Foi amic P	owing a rd algori rogramr	Minimur thm – Si	m ingle-
UNIT	IV ALGOR	THM DESIGN TECHNIQUES			9	
Longe	est Common	ming: Matrix-Chain Multiplication – Elements of Dynamic Pr Subsequence- Greedy Algorithms: – Elements of the Gree Problem - Huffman Coding			n	
UNIT	V NP CO	MPLETE AND NP HARD			9	
	•	s: Polynomial Time – Polynomial-Time Verification – NP- Coss Proofs – NP-Complete Problems.	mplete	eness ar	nd Redu	cibility
		TOTAL PER	RIODS		45	
 1. Wri	te an algorit	SUGGESTED ACTIVITIES: hm for Towers of Hanoi problem using recursion and analyz				of dis

- 1. Write an algorithm for Towers of Hanoi problem using recursion and analyze the complexity (No of disc-4)
- 2. Write any one real time application of hierarchical data structure
- 3. Write a program to implement Make_Set, Find_Set and Union functions for Disjoint Set Data Structure for a given undirected graph G(V,E) using the linked list representation with simple implementation of Union operation
- 4. Find the minimum cost to reach last cell of the matrix from its first cell
- 5. Discuss about any NP completeness problem

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai)

An Autonomous institution, Anniated to Anna Uni	versity, Chenna	ı
Department: Computer Science and Engineering	ı. R2024. CBCS	

	Course Outcomes						
At the	At the end of the course, the student will be able to						
CO1	Design data structures and algorithms to solve computing problems.						
CO2	Choose and implement efficient data structures and apply them to solve problems.						
CO3	Design algorithms using graph structure and various string-matching algorithms to solve real-life problems.						
CO4	Design one's own algorithm for an unknown problem.						
CO5	Apply suitable design strategy for problem solving.						

REFERENCES

- 1. S.Sridhar," Design and Analysis of Algorithms", Oxford University Press, 1st Edition, 2014
- 2. Adam Drozdex, "Data Structures and algorithms in C++", Cengage Learning, 4th Edition, 2013.
- 3. T.H. Cormen, C.E.Leiserson, R.L. Rivest and C.Stein, "Introduction to Algorithms", Prentice Hall of India, 3rd Edition, 2012.
- 4. Mark Allen Weiss, "Data Structures and Algorithms in C++", Pearson Education, 3rd Edition, 2009.
- 5. E. Horowitz, S. Sahni and S. Rajasekaran, "Fundamentals of Computer Algorithms", University Press, 2nd Edition, 2008.
- 6. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006.

	CO/PO, PSO Mapping (3/2/1 indicates the strength of correlation) 3-Strong 2-Medium, 1-Weak Programme Outcomes (POs) and Programme Specific Outcomes PSOs'							
	PO1	PO2	PO3	PSO1	PSO2	PSO3		
CO1	3	2	2	3	1	3		
CO2	3	1	-	-	2	3		
CO3	3	-	1	1	-	2		
CO4	3	2	1	-	2	1		
CO5	3	3	1	1	-	1		
AVG	3.00	2.00	1.25	1.67	1.67	2.00		

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department: Computer Science and Engineering, R2024, CBCS

P2	24CS103	NETWORK TECHNOLOGIES	L	T	Р	С
	.400103	NETWORK TEOTINGEGOILS	3	0	0	3
		Course Objectives				
1	To understa	nd the basic concepts of networks				
2	To explore \	various technologies in the wireless domain				
3	To study ab	out 4G and 5G cellular networks				
4	To learn abo	out Network Function Virtualization				
5	To understa	nd the paradigm of Software defined networks				
UNIT	I NETWORK	KING CONCEPTS			9	
Netwo	ork throughp	Client-Server Networks. Network Devices. Network Termino ut, delay. Osi Model. Packets, Frames, And Headers. Collis work Adapter. Hub. Switch. Router. Firewall, IP addressing	ion An			
UNIT	II WIRELES	S NETWORKS			9	
		echniques- IEEE 802.11a, 802.11g, 802.11e, 802.11n/ac/ax Security – Profiles – zigbee	k/ay/ba	/be, Qos	S – Blue	tooth –
UNIT	III MO	BILE DATA NETWORKS			9	
Conce	epts of 5G – ecture - Vehi	Wireless Networks – Physical Layer and Multiple Access – channel access –air interface -Cognitive Radio- spectrum n cular communications-protocol – Network slicing – MIMO, r	nanage	ement –	C-RAN duction	
UNIT		FTWARE DEFINED NETWORKS			9	
SDN Architecture. Characteristics of Software-Defined Networking. SDN- and NFV-Related Standards. SDN Data Plane. Data Plane Functions. Data Plane Protocols. OpenFlow Logical Network Device. Flow Table Structure. Flow Table Pipeline. The Use of Multiple Tables. Group Table. OpenFlow Protocol. SDN Control Plane Architecture. Control Plane Functions. Southbound Interface. Northbound Interface. Routing. ITU-T Model. OpenDaylight. OpenDaylight Architecture. OpenDaylight Helium. SDN Application Plane Architecture. Northbound Interface. Network Services Abstraction Layer. Network Applications. User						
Routir	ol Plane Arcl ng. ITU-T Mo Architecture	nitecture. Control Plane Functions. Southbound Interface. Nodel. OpenDaylight. OpenDaylight Architecture. OpenDaylig	e. Ope lorthbo ht Heli	nFlow Found Inte um. SDI	Protocol. erface. N Applic	SDN
Routir Plane Interfa	ol Plane Arcl ng. ITU-T Mo Architecture ace.	nitecture. Control Plane Functions. Southbound Interface. Nodel. OpenDaylight. OpenDaylight Architecture. OpenDaylig	e. Ope lorthbo ht Heli	nFlow Found Inte um. SDI	Protocol. erface. N Applic	SDN
Routin Plane Interfa UNIT Motiva Netwo	ol Plane Arcl ng. ITU-T Mo Architecture ace. V NETWOR ation-Virtual ork Function	nitecture. Control Plane Functions. Southbound Interface. Nodel. OpenDaylight. OpenDaylight Architecture. OpenDaylight. Northbound Interface. Network Services Abstraction Laye	e. Ope lorthbo ht Heli r. Netv	enFlow Found Inte lum. SDI vork App	Protocol. Protoc	SDN cation s. User
Routin Plane Interfa UNIT Motiva Netwo	ol Plane Arcl ng. ITU-T Mo Architecture ace. V NETWOR ation-Virtual ork Function	nitecture. Control Plane Functions. Southbound Interface. Nodel. OpenDaylight. OpenDaylight Architecture. OpenDaylight. Northbound Interface. Network Services Abstraction Layer. K FUNCTIONS VIRTUALIZATION Machines –NFV benefits-requirements – architecture- NFV s - NFV Management and Orchestration- NFV Use Case	e. Ope lorthbo ht Heli r. Netv / Infras	enFlow Found Inte lum. SDI vork App	Protocol. Protoc	SDN cation s. User
Routin Plane Interfa UNIT Motiva Netwo	ol Plane Arcl ng. ITU-T Mo Architecture ace. V NETWOR ation-Virtual ork Function	nitecture. Control Plane Functions. Southbound Interface. Nodel. OpenDaylight. OpenDaylight Architecture. OpenDaylight. Northbound Interface. Network Services Abstraction Layer. K FUNCTIONS VIRTUALIZATION Machines –NFV benefits-requirements – architecture- NFV s - NFV Management and Orchestration- NFV Use Case AN and VPN	e. Ope lorthbo ht Heli r. Netv / Infras	enFlow Found Inte lum. SDI vork App	Protocol. Protoc	SDN cation s. User
Routir Plane Interfa UNIT Motiva Netwo virtual	ol Plane Arching. ITU-T Mos Architecture ace. V NETWOR ation-Virtual ork Function Itzation – VL	nitecture. Control Plane Functions. Southbound Interface. Noted. OpenDaylight. OpenDaylight Architecture. OpenDaylight. Northbound Interface. Network Services Abstraction Layer. Northbound Interface. Network Services Abstraction Layer. Network Layer. Network Services Abstraction Layer. Network Services Abstraction Layer. Network Services Abstraction Layer. Network Layer. Network Services Abstraction Layer. Network Layer. Network Layer. Network Layer. Network Layer. Network Layer. Network Layer	e. Ope lorthbo ht Heli r. Netv / Infras	enFlow Found Inte lum. SDI vork App	Protocol. Protoc	SDN cation s. User
Routing Plane Interface UNIT Motivative Virtual	ol Plane Arcling. ITU-T Mos Architecture ace. V NETWOR ation-Virtual ork Function lization – VL	nitecture. Control Plane Functions. Southbound Interface. Noted. OpenDaylight. OpenDaylight Architecture. OpenDaylight. Northbound Interface. Network Services Abstraction Layer. Northbound Interface. Network Services Abstraction Layer. K FUNCTIONS VIRTUALIZATION Machines –NFV benefits-requirements – architecture- NFV s - NFV Management and Orchestration- NFV Use Case AN and VPN TOTAL PER Course Outcomes	e. Ope lorthbo ht Heli r. Netv / Infras	enFlow Found Inte lum. SDI vork App	Protocol. Protoc	SDN cation s. User
Routing Plane Interface UNIT Motivative Virtual At the CO1	ol Plane Arcling. ITU-T More Architecture ace. V NETWOR ation-Virtual ork Function Ization – VL	nitecture. Control Plane Functions. Southbound Interface. Noted. OpenDaylight. OpenDaylight Architecture. OpenDaylight. Northbound Interface. Network Services Abstraction Layer. Northbound Interface. Network Services Abstraction Layer. K FUNCTIONS VIRTUALIZATION Machines –NFV benefits-requirements – architecture- NFV s - NFV Management and Orchestration- NFV Use Case AN and VPN TOTAL PER Course Outcomes course, the student will be able to	e. Ope lorthbo ht Heli r. Netv / Infras	enFlow Found Inte lum. SDI vork App	Protocol. Protoc	SDN cation s. User
Routing Plane Interface UNIT Motivative Virtual At the CO1 CO2	ol Plane Arcling. ITU-T More Architecture ace. V NETWOR ation-Virtual ork Function Ization – VL. e end of the Explain bas Compare di	nitecture. Control Plane Functions. Southbound Interface. Noted. OpenDaylight. OpenDaylight Architecture. OpenDaylight. Northbound Interface. Network Services Abstraction Layer. Northbound Interface. Network Services Abstraction Layer. Northbound Interface. Network Services Abstraction Layer. K FUNCTIONS VIRTUALIZATION Machines –NFV benefits-requirements – architecture- NFV is - NFV Management and Orchestration- NFV Use Case AN and VPN TOTAL PER Course Outcomes course, the student will be able to ic networking concepts	e. Ope lorthbo ht Heli r. Netv / Infras es- NF	enFlow Found Inte lum. SDI vork App	Protocol. Protoc	SDN cation s. User
Routing Plane Interface UNIT Motivative Virtual CO1 CO2 CO3	ol Plane Arcling. ITU-T More Architecture ace. V NETWOR ation-Virtual ork Function Ization – VL	nitecture. Control Plane Functions. Southbound Interface. Noted. OpenDaylight. OpenDaylight Architecture. OpenDaylight. Northbound Interface. Network Services Abstraction Layer. Northbound Interface. Network Services Abstraction Layer. K FUNCTIONS VIRTUALIZATION Machines –NFV benefits-requirements – architecture- NFV is - NFV Management and Orchestration- NFV Use Case AN and VPN TOTAL PER Course Outcomes course, the student will be able to ic networking concepts ferent wireless networking protocols	e. Ope lorthbo ht Heli r. Netv / Infras es- NF	enFlow Found Inte lum. SDI vork App	Protocol. Protoc	SDN cation s. User

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

SUGGESTED ACTIVITIES:

- 1. Execute various network utilities such as tracert, pathping, ipconfig
- 2. Implement the Software Defined Networking using Mininet
- 3. Implement routing in Mininet
- 4. Install a virtual machine and study network virtualization
- 5. Simulate various network topologies in Network Simulator

REFERENCES

- 1. James Bernstein, "Networking made Easy", 2018. (UNIT I)
- 2. HoudaLabiod, Costantino de Santis, HossamAfifi "Wi-Fi, Bluetooth, Zigbee and WiMax", Springer 2007 (UNIT 2)
- 3. Erik Dahlman, Stefan Parkvall, Johan Skold, 4G: LTE/LTE-Advanced for MobileBroadband, Academic Press, 2013 (UNIT 3)
- 4. Saad Z. Asif "5G Mobile Communications Concepts and Technologies" CRC press –2019 (UNIT 3)
- 5. William Stallings "Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud"1st Edition, Pearson Education, 2016.(Unit 4 and 5)
- 6. Thomas D.Nadeau and Ken Gray, SDN Software Defined Networks, O'Reilly Publishers, 2013.
- 7. Guy Pujolle, "Software Networks", Second Edition, Wiley-ISTE, 2020

CO/PO, PSO Mapping

(3/2/1 indicates the strength of correlation) 3-Strong 2-Medium, 1-Weak Programme Outcomes (POs) and Programme Specific Outcomes PSOs'

	٦	Programme Outcomes (POS) and Programme Specific Outcomes PSOS					
	PO1	PO2	PO3	PSO1	PSO2	PSO3	
CO1	1	3	2	-	1	-	
CO2	1	3	3	3	-	1	
CO3	1	3	3	2	2	2	
CO4	1	2	2	1	2	1	
CO5	1	3	1	1	1	2	
AVG	1.00	2.80	2.20	1.75	1.50	1.50	

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai)

Department: Computer Science and Engineering, R2024, CBCS

			-		
P24CS104	PRINCIPLES OF PROGRAMMING LANGUAGES	L	T	P	С
	Course Objectives	3	0	0	3
1 To understa	and and describe syntax and semantics of programming lar	nguages	 S		
	and data, data types, and basic statements	3 3			
	and call-return architecture and ways of implementing them				
	and object-orientation, concurrency, and event handling in p		nming la	nguages	 S
	programs in non-procedural programming paradigms	3	3	3 - 3 -	
UNIT I SYNTAX				9	
	amming languages – describing syntax – context – free gra tics – lexical analysis – parsing – recursive-descent – botto			ite gram	ımars –
UNIT II DATA, DA	TA TYPES, AND BASIC STATEMENTS			9	
references – Arith expressions – ass iterations – branch	es—strings—array types— associative arrays—record types— umetic expressions — overloaded operators — type conversions ignment statements — mixed- mode assignments — controloning — guarded statements	ons – re	lational	and boo lection -	olean
	BPROGRAMS AND IMPLEMENTATIONS			9	
methods - design	esign issues – local referencing – parameter passing – ove issues for functions – semantics of call and return – imple nic local variables – nested subprograms – blocks – dynam	menting	simple		
UNIT IV OBJECT	-ORIENTATION, CONCURRENCY, AND EVENT HANDL	ING		9	
	 design issues for OOP languages – implementation of on naphores – monitors – message passing – threads – state of – event handling 				
UNIT V FUNCTION	NAL AND LOGIC PROGRAMMING LANGUAGES			9	
Introduction to lam	bda calculus – fundamentals of functional programming lar	nguages	s – Prog	rammin	g with
Scheme – Progra Prolog – multi-par	mming with ML – Introduction to logic and logic progra	mming	– Progr	amming	, with
	TOTAL PE	RIODS		45	
	Course Outcomes				
At the end of the	course, the student will be able to				
<u> </u>	ntax and semantics of programming languages				
CO2 Explain data	a, data types, and basic statements of programming langua	ages			
	implement subprogram constructs	-			
CO4 Apply object	t-oriented, concurrency, and event handling programming	constr	ucts		
CO5 Develop pro language	ograms in Scheme, ML, and Prolog and Understand and ac	dopt ne	wprogra	mming	
REFERENCES					
1. Robert W. Sebe	esta, "Concepts of Programming Languages", Eleventh Edi	tion, Ac	dison W	/esley, 2	2012
2. W. F. Clocksin a Edition, Springer,	and C. S. Mellish, "Programming in Prolog: Using the ISO 3 2003	Standar	d", Fifth		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

- 3. Michael L.Scott, "Programming Language Pragmatics", Fourth Edition, Morgan Kaufmann, 2009.
- 4. R.KentDybvig, "TheSchemeprogramminglanguage", FourthEdition, MITPress, 2009
- 5. Richard A. O'Keefe, "The craft of Prolog", MIT Press, 2009
- 6. W.F.Clocksin and C.S.Mellish, "Programming in Prolog: Using the ISO Standard", Fifth Edition, Springer,2003

		(3/2/1 indicates the strength of correlation) 3-Strong 2-Medium, 1-Weak Programme Outcomes (POs) and Programme Specific Outcomes PSOs'							
	PO1	PO2	PO3	PSO1	PSO2	PSO3			
CO1	4	-	-	-	-	1			
CO2	1	-	1	-	1	2			
CO3	1	1	-	-	1	2			
CO4	-	2	1	1	2	2			
CO5	1	2	1	-	2	3			
AVG	1.00	1.67	1.00	1.00	1.50	2.00			

CO/PO, PSO Mapping

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department: Computer Science and Engineering, R2024, CBCS

P2	4RM101	RESEARCH METHODOLOGY AND IPR	L	T	Р	С
			2	0	0	2
		Course Objectives				
1		and the formulation of research problem				
2		ar with data collection and sources				
3		ar with data analysis and reporting				
4		and intellectual property rights				
5		and about patents				
	I RESEARC				6	
		rch process and design, Use of Secondary and explorator ve research, Observation studies, Experiments and Surve		o answe	r the res	search
UNIT	II DATA CO	LLECTION AND SOURCES			6	
	•	easurement Scales, Questionnaires and Instruments, Sam Exploring, examining and displaying.	npling ar	nd meth	ods.	
UNIT	III DATA AN	ALYSIS AND REPORTING			6	
		rariate analysis, Hypotheses testing and Measures of Asso s and findings using written reports and oral presentation.	ciation.			
UNIT	IV INTELLE	CTUAL PROPERTY RIGHTS			6	
estab	lishments, R	ess, Trade secrets, utility Models, IPR & Biodiversity, Role ight of Property, Common rules of IPR practices, Types an ons of UNESCO in IPR maintenance.				
UNIT	V PATENTS				6	
Types	of patent ap	es and benefits of patent, Concept, features of patent, Investigation, process E-filing, Examination of patent, Grant of Inses, Licensing of related patents, patent agents, Registra	[:] patent,	Revoca	ation, Ed	
		TOTAL PE	RIODS		30	
		Course Outcomes				
At the	end of the	course, the student will be able to				
CO1	Identify rese	earch problems				
CO2	Collect data	from various sources				
CO3	Perform dat	a analysis and prepare reports				
CO4	Understand	the concept of intellectual property rights				
CO5	Apply the re	search for patents				
REFE	RENCES					
	oper Donald ducation, 11e	R, Schindler Pamela S and Sharma JK, "Business Researe (2012).	ch Meth	nods", T	ata McG	Graw
	therine J. Ho preneur Pres	lland, "Intellectual property: Patents, Trademarks, Copyriges, 2007.	hts, Tra	de Secr	ets",	
3. Dav	vid Hunt, Lor	ng Nguyen, Matthew Rodgers, "Patent searching: tools & to	echniqu	es", Wile	ey, 2007	7.

4. The Institute of Company Secretaries of India, Statutory body under an Act of parliament, "Professional

Programme Intellectual Property Rights, Law and practice", September 2013

(An Autonomous Institution, Affiliated to Anna University, Chennai) **Department: Computer Science and Engineering, R2024, CBCS**

CO/PO, PSO Mapping (3/2/1 indicates the strength of correlation) 3-Strong 2-Medium. 1-Weak

	Programme Outcomes (POs) and Programme Specific Outcomes PSOs'							
	PO1	PO2	PO3	PSO1	PSO2	PSO3		
CO1	3	2	2	3	2	3		
CO2	3	-	-	-	1	3		
CO3	3	-	-	1	1	2		
CO4	3	-	-	-	1	1		
CO5	3	-	-	1	1	1		
AVG	3.00	2.00	2.00	1.67	1.20	2.00		

Summarize basics of disaster			Audit Course – I	L	Т	Р	С
Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response critical understanding of key concepts in disaster risk reduction and humanitarian response policy and practice frommultiple perspectives. Illustrate disaster risk reduction and humanitarian response policy and practical relevancein specific types of disasters and conflict situations. Describe an understanding of standards of humanitarian response and practical relevancein specific types of disasters and conflict situations. Develop the strengths and weaknesses of disaster management approaches UNIT INTRODUCTION	P2	4AC101		2	0	0	0
Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. Illustrate disaster risk reduction and humanitarian response policy and practice frommultiple perspectives. Describe an understanding of standards of humanitarian response and practical relevancein specific types of disasters and conflict situations. Develop the strengths and weaknesses of disaster management approaches UNIT I INTRODUCTION 9 Disaster: Definition, Factors and Significance; Difference between Hazard And Disaster; Natural and Mammade Disasters: Difference, Nature, Types and Magnitude. UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS 9 Economic Damage, Loss of Human and Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. UNIT II DISASTER PRONE AREAS IN INDIA 9 Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; AreasProne To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT 9 Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness. UNIT V RISK ASSESSMENT 9 Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival TOTAL PERIODS Course Outcomes At the end of the course, the student will be able to Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response and practicel from multiple perspectives.			Course Objectives				
Illustrate disaster risk reduction and humanitarian response policy and practice frommultiple perspectives. Illustrate disaster risk reduction and humanitarian response and practical relevancein specific types of disasters and conflict situations. Develop the strengths and weaknesses of disaster management approaches UNIT I INTRODUCTION 9 Disaster: Definition, Factors and Significance; Difference between Hazard And Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude. UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS 9 Economic Damage, Loss of Human and Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. UNIT III DISASTER PRONE AREAS IN INDIA 9 Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT 9 Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness: UNIT IV RISK ASSESSMENT 9 Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment. Strategies for Survival TOTAL PERIODS Course Outcomes At the end of the course, the student will be able to CO1 Ability to summarize basics of disaster CO2 Ability to illustrate disaster risk reduction and humanitarian response and practical relevance in specific types of disasters and conflict situations.	1	Summarize	basics of disaster				
Describe an understanding of standards of humanitarian response and practical relevancein specific types of disasters and conflict situations. 5 Develop the strengths and weaknesses of disaster management approaches UNIT I INTRODUCTION 9 Disaster: Definition, Factors and Significance; Difference between Hazard And Disaster; Natural and Mammade Disasters: Difference, Nature, Types and Magnitude. UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS 9 Economic Damage, Loss of Human and Animal Life, Destruction Of Ecosystem, Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And Conflicts. UNIT II DISASTER PROME AREAS IN INDIA 9 Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; AreasProne To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT 9 Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness. UNIT V RISK ASSESSMENT 9 Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment. Strategies for Survival TOTAL PERIODS Course Outcomes At the end of the course, the student will be able to CO1 Ability to summarize basics of disaster Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO3 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	2	•	itical understanding of key concepts in disaster risk reduc	tion and	human	itarian	
Specific types of disasters and conflict situations.	3		· · · · · · · · · · · · · · · · · · ·	d practi	ce from	multiple	
UNIT I INTRODUCTION Disaster: Definition, Factors and Significance; Difference between Hazard And Disaster; Natural and Mammade Disasters: Difference, Nature, Types and Magnitude. UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS 9 Economic Damage, Loss of Human and Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. UNIT III DISASTER PRONE AREAS IN INDIA 9 Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; AreasProne To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT 9 Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness. UNIT V RISK ASSESSMENT 9 Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival TOTAL PERIODS Course Outcomes At the end of the course, the student will be able to CO1 Ability to summarize basics of disaster CO2 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	4			nd pract	ical rele	vancein	1
Disaster: Definition, Factors and Significance; Difference between Hazard And Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude. UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS 9 Economic Damage, Loss of Human and Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. UNIT III DISASTER PRONE AREAS IN INDIA 9 Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; AreasProne To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT 9 Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness. UNIT V RISK ASSESSMENT 9 Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival TOTAL PERIODS Course Outcomes At the end of the course, the student will be able to CO1 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response policy and practice from multiple perspectives. Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	5	Develop the	strengths and weaknesses of disaster management appro	oaches			
Manmade Disasters: Difference, Nature, Types and Magnitude. UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS 9 Economic Damage, Loss of Human and Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. UNIT III DISASTER PRONE AREAS IN INDIA 9 Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; AreasProne To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT 9 Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness. UNIT V RISK ASSESSMENT 9 Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival **TOTAL PERIODS** Course Outcomes** At the end of the course, the student will be able to CO1 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	UNIT	I INTRO	DUCTION			9	
Economic Damage, Loss of Human and Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. UNIT III DISASTER PRONE AREAS IN INDIA Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; AreasProne To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness. UNIT V RISK ASSESSMENT Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival Course Outcomes At the end of the course, the student will be able to Cot Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.				nd Disa	ster; Na	tural and	d
Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts. UNIT III DISASTER PRONE AREAS IN INDIA Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; AreasProne To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness. UNIT V RISK ASSESSMENT Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival TOTAL PERIODS Course Outcomes At the end of the course, the student will be able to Co1 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	UNIT	II REPE	ERCUSSIONS OF DISASTERS AND HAZARDS			9	
Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanches; AreasProne To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness. UNIT V RISK ASSESSMENT 9 Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival Course Outcomes At the end of the course, the student will be able to CO1 Ability to summarize basics of disaster CO2 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	Eartho Avala	quakes, Volc nches, Man-	anisms, Cyclones, Tsunamis, Floods, Droughts And Famil made disaster: Nuclear Reactor Meltdown, Industrial Accid	nes, Lai	ndslides	And	oills,
To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness. UNIT V RISK ASSESSMENT 9 Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival TOTAL PERIODS At the end of the course, the student will be able to CO1 Ability to summarize basics of disaster CO2 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	UNIT	III DISAST	ER PRONE AREAS IN INDIA			9	
Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness. UNIT V RISK ASSESSMENT Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival TOTAL PERIODS Course Outcomes At the end of the course, the student will be able to CO1 Ability to summarize basics of disaster CO2 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	To Cy	clonic and C					
of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness. UNIT V RISK ASSESSMENT Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival TOTAL PERIODS Course Outcomes At the end of the course, the student will be able to CO1 Ability to summarize basics of disaster CO2 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	UNIT	IV DISASTE	R PREPAREDNESS AND MANAGEMENT			9	
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival TOTAL PERIODS Course Outcomes At the end of the course, the student will be able to CO1 Ability to summarize basics of disaster CO2 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	of Rer	mote Sensin	g, Data from Meteorological And Other Agencies, Media R				
Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival TOTAL PERIODS Course Outcomes At the end of the course, the student will be able to CO1 Ability to summarize basics of disaster CO2 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	UNIT	V RISK ASS	SESSMENT			9	
Course Outcomes At the end of the course, the student will be able to CO1 Ability to summarize basics of disaster CO2 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	Situat	ion. Techniq	ues of Risk Assessment, Global Co-Operation in Risk Ass				
At the end of the course, the student will be able to CO1 Ability to summarize basics of disaster CO2 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.			TOTAL PE	RIODS			
CO1 Ability to summarize basics of disaster CO2 Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.			Course Outcomes				
Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response. CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	At the	end of the	course, the student will be able to				
humanitarian response. CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	CO1	Ability to su	mmarize basics of disaster				
multiple perspectives. Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	CO2			r risk re	duction	and	
relevance in specific types of disasters and conflict situations.	CO3	_	•	policy	and pra	ctice fro	m
CO5 Ability to develop the strengths and weaknesses of disaster management approaches	CO4			ponse a	and prac	ctical	
1 2 20 p. w.m.y to do to one of the original and modification of allocation management approaches	CO5	Ability to de	velop the strengths and weaknesses of disaster managem	ent app	roaches	;	

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

REFERENCES

Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi, 2009.

NishithaRai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies" New Royal book Company, 2007.

Sahni, Pradeep et. al.," Disaster Mitigation Experiences And Reflections", Prentice HallOf India, New Delhi.2001.

Deini,	2001.								
		CO/PO, PSO Mapping (3/2/1 indicates the strength of correlation) 3-Strong 2-Medium, 1-Weak Programme Outcomes (POs) and Programme Specific Outcomes PSOs'							
	PO1	PO2	PO3	PSO1	PSO2	PSO3			
CO1	2	2	2	-	-	-			
CO2	2	2	2	1	-	-			
CO3	2	2	2	1	-	-			
CO4	2	2	2	1	-	-			
CO5	2	2	2	1	-	-			
AVG	2	2	2	1	_	-			

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department: Computer Science and Engineering, R2024, CBCS

D.	24CS102 DATABASE PRACTICES		L	Т	Р	С	
	2465102	DATABASE PRACTICES	3 0 2		0 2 4		
		Course Objectives					
1	Describe th	e fundamental elements of relational database manageme	nt syste	ms			
2		basic concepts of relational data model, entity-relationship tional algebra and SQL.	model,	relation	al datab	ase	
3	Understand	query processing in a distributed database system					
4	Understand	the basics of XML and create well-formed and valid XML	docume	nts.			
5	Distinguish	the different types of NoSQL databases					
6	To understand the different models involved in database security and their applications in real times world to protect the database and information associated with them.						
UNIT	I RELATION	IAL DATA MODEL			15		

Entity Relationship Model – Relational Data Model – Mapping Entity Relationship Model to Relational Model – Relational Algebra – Structured Query Language – Database Normalization.

Suggested Activities:

Data Definition Language

- Create, Alter and Drop
- Enforce Primary Key, Foreign Key, Check, Unique and Not Null Constraints
- **Creating Views**

Data Manipulation Language

- Insert, Delete, Update
- Cartesian Product, Equi Join, Left Outer Join, Right Outer Join and Full Outer Join
- Aggregate Functions
- Set Operations
- **Nested Queries**

Transaction Control Language

· Commit, Rollback and Save Points

UNIT II DISTRIBUTED DATABASES, ACTIVE DATABASES AND OPEN DATABASE CONNECTIVITY

15

Distributed Database Architecture - Distributed Data Storage - Distributed Transactions - Distributed Query Processing – Distributed Transaction Management – Event Condition Action Model – Design and Implementation Issues for Active Databases – Open Database Connectivity.

Suggested Activities:

Distributed Database Design and Implementation

Row Level and Statement Level Triggers

Accessing a Relational Database using PHP, Python and R

UNIT III XML DATABASES

15

Structured, Semi structured, and Unstructured Data – XML Hierarchical Data Model – XML Documents – Document Type Definition – XML Schema – XML Documents and Databases – XML Querying – XPath – XQuery

Suggested Activities:

Creating XML Documents, Document Type Definition and XML Schema

Using a Relational Database to store the XML documents as text

Using a Relational Database to store the XML documents as data elements

Creating or publishing customized XML documents from pre-existing relational databases

Extracting XML Documents from Relational Databases

XML Querying

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

UNIT IV NOSQL DATABASES AND BIG DATA STORAGE SYSTEMS

15

NoSQL – Categories of NoSQL Systems – CAP Theorem – Document-Based NoSQL Systems and MongoDB – MongoDB Data Model – MongoDB Distributed Systems Characteristics – NoSQL Key-Value Stores – DynamoDB Overview – Voldemort Key-Value Distributed Data Store – Wide Column NoSQL Systems – Hbase Data Model – Hbase Crud Operations – Hbase Storage and Distributed System Concepts – NoSQL Graph Databases and Neo4j – Cypher Query Language of Neo4j – Big Data – MapReduce – Hadoop – YARN.

Suggested Activities:

Creating Databases using MongoDB, DynamoDB, Voldemort Key-Value Distributed Data Store Hbase and Neo4j.

Writing simple queries to access databases created using MongoDB, DynamoDB, Voldemort Key-Value Distributed Data Store Hbase and Neo4j.

UNIT V DATABASE SECURITY

15

Database Security Issues – Discretionary Access Control Based on Granting and Revoking Privileges – Mandatory Access Control and Role-Based Access Control for Multilevel Security – SQL Injection – Statistical Database Security – Flow Control – Encryption and Public Key Infrastructures – Preserving Data Privacy – Challenges to Maintaining Database Security – Database Survivability – Oracle Label-Based Security.

Suggested Activities:

Implementing Access Control in Relational Databases

	TOTAL PERIODS	75					
	Course Outcomes						
At the	e end of the course, the student will be able to						
CO1	Convert the ER-model to relational tables, populate relational databases and fon data.	ormulate SQL queries					
CO2	Understand and write well-formed XML documents						
CO3	Be able to apply methods and techniques for distributed query processing.						
CO4	Design and Implement secure database systems.						
CO5	Use the data control, definition, and manipulation languages of the NoSQL dat	abases					
DEEE	DENCES						

REFERENCES

- 1. R. Elmasri, S.B. Navathe, "Fundamentals of Database Systems", Seventh Edition, Pearson Education 2016.
- 2. Henry F. Korth, Abraham Silberschatz, S. Sudharshan, "Database System Concepts", Seventh Edition, McGraw Hill, 2019.
- 3. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems, Eighth Edition, Pearson Education, 2006
- 4. Raghu Ramakrishnan , Johannes Gehrke "Database Management Systems", Fourth Edition, McGraw Hill Education, 2015.
- 5. Harrison, Guy, "Next Generation Databases, NoSQL and Big Data", First Edition, Apress publishers, 2015
- 6. Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Sixth Edition, Pearson Education, 2015

AVG

2.40

2.00

Meenakshi Sundararajan Engineering College

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

	CO/PO, PSO Mapping (3/2/1 indicates the strength of correlation) 3-Strong 2-Medium, 1-Weak Programme Outcomes (POs) and Programme Specific Outcomes PSOs'							
	PO1	PO2	PO3	PSO1	PSO2	PSO3		
CO1	2	2	1	3	1	2		
CO2	2	2	-	2	1	1		
CO3	3	1	2	1	-	1		
CO4	3	2	2	1	1	1		
CO5	2	3	1	1	-	1		

1.60

1.00

1.20

1.50

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department: Computer Science and Engineering, R2024, CBCS

D0400405	ADVANCED DATA STRUCTURES AND	L	Т	Р	С			
P24CS105	ALGORITHMS LABORATORY	0	0	4	2			
_	Course Objectives							
1 To acquire	To acquire the knowledge of using advanced tree structures							
2 To learn the	To learn the usage of heap structures							
3 To understa	To understand the usage of graph structures and spanning trees							
4 To understa	To understand the problems such as matrix chain multiplication, activity selection and Huffman coding							
5 To understa	To understand the necessary mathematical abstraction to solve problems							
	LIST OF EXPERIMENTS							
1: Implementation	of recursive function for tree traversal and Fibonacci							
2: Implementation	of iteration function for tree traversal and Fibonacci							
3: Implementation	of Merge Sort and Quick Sort							
4: Implementation	of a Binary Search Tree							
5: Red-Black Tree	e Implementation							
6: Heap Implemer	ntation							
7: Fibonacci Heap	Implementation8: Graph Traversals							
9: Spanning Tree	Implementation							
10: Shortest Path	Algorithms (Dijkstra's algorithm, Bellman Ford Algorithm)							
11: Implementatio	n of Matrix Chain Multiplication							
12: Activity Select	ion and Huffman Coding Implementation							
	HARDWARE/SOFTWARE REQUIREMENTS	<u> </u>						
	pen source Linux or its derivative							
2. Open So	ource C++ Programming tool like G++/GCC							
	TOTAL PE	RIODS		60				
	Course Outcomes							
	course, the student will be able to							
	implement basic and advanced data structures extensively	У						
	orithms using graph structures							
	develop efficient algorithms with minimum complexity usin	ig desig	n techni	ques				
- ' '	ograms using various algorithms.	DT/!!		1 200				
Choose appropriate data structures and algorithms, understand the ADT/libraries, and use it to design algorithms for a specific problem								
REFERENCES								
1. Lipschutz Seyr Edition, 2014.	nour, "Data Structures Schaum's Outlines Series", Tata Mo	:Graw H	ill, 3rd					
2. Alfred V. Aho, Pearson Educatio	John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and An, Reprint 2006.	Algorithr	ns",					
3. http://www.cou	rsera.org/specializations/data-structures-algorithms							
4. http://www.tuto	rialspoint.com/data_structures_algorithms							

AVG

1.00

1.50

Meenakshi Sundararajan Engineering College

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

5. http://www.geeksforgeeks.org/data-structures/							
	CO/PO, PSO Mapping (3/2/1 indicates the strength of correlation) 3-Strong 2-Medium, 1-Weak Programme Outcomes (POs) and Programme Specific Outcomes PSOs'						
	PO1	PO2	PO3	PSO1	PSO2	PSO3	
CO1	1	1	-	1	1	-	
CO2	1	-	1	2	2	1	
CO3	1	1	1	1	2	1	
CO4	1	2	2	2	2	1	
CO5	1	2	3	1	3	1	

1.40

2.00

1.00

1.75

P24CS202		INTERNET OF THINGS		Т	Р	С		
			3	0 2		4		
	Course Objectives							
1	To Understand the Architectural Overview of IoT							
2	To Understand the IoT Reference Architecture and Real World Design Constraints							
3	To Understand the various IoT levels							
4	To understand the basics of cloud architecture							
5	To gain ex	perience in Raspberry PI and experiment simple IoT a	pplicat	ion on i	t			
UNIT	IINTRODUC	CTION			9+6			
		Domain Specific IoTs - IoT and M2M-Sensors for IoT App oT System Management with NETCONF-YANG	lication	s-Struct	ure of lo	oT–		
UNIT	II IoT ARCH	ITECTURE, GENERATIONS AND PROTOCOLS			9+6			
Advar		for IoT - IoT reference architecture -First Generation – Des tion – Description & Characteristics–Integrated IoT Sensor	•			cs-		
UNIT	III IoT PROT	OCOLS AND TECHNOLOGY			9+6			
		Protocols - BACnet Protocol -Zigbee Architecture - 6LowP Storage Module-Power Management Module-RF Module-				Sensor		
UNIT	IV CLOUD A	ARCHITECTURE BASICS			9+6			
		aaS, PaaS, SaaS Development environments for service ocloud platform in industry	develo	pment; /	Amazon	Ι,		
UNIT	V IOT PROJ	ECTS ON RASPBERRY PI			9+6			
librari	es – Hardwa	RASPBERRY PI- Creating the sensor project - Preparing Reference relations and the hardware representation of sensor values - External representation - External repre	- Intern	al repres	sentatio	n of		
1. Dev 2. Dev 3. Dev Raspl 4. Dev 5. Dev	velop an app velop an app perry Pi velop an app velop an app	TIVITIES: lication for LED Blink and Pattern using Arduino or Raspbelication for LED Pattern with Push Button Control using Ardication for LM35 Temperature Sensor to display temperatulation for Forest fire detection end node using Raspberry lication for home intrusion detection web application lication for Smart parking application using python and Dja	duino o ure valu Pi devi	ies using	g arduin sensor			
		TOTAL PE	RIODS		75			
At the	e end of the	Course Outcomes course, the student will be able to						
CO1	Understand the various concept of the IoT and their technologies							
CO2	Develop the IoT application using different hardware platforms							
CO3	Implement the various IoT Protocols					_		
CO4	Understand the basic principles of cloud computing							
CO5	Develop an	d deploy the IoT application into cloud environment						

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

REFERENCES

- 1. Arshdeep Bahga, Vijay Madisetti, Internet of Things: A hands-on approach, Universities Press, 2015
- 2. Dieter Uckelmann, Mark Harrison, Florian Michahelles (Eds), Architecting the Internet of Things, Springer, 2011
- 3. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015
- 4. Ovidiu Vermesan Peter Friess, 'Internet of Things From Research and Innovation to Market Deployment', River Publishers, 2014
- 5. N. Ida, Sensors, Actuators and Their Interfaces: A Multidisciplinary Introduction, 2nd EditionScitech Publishers, 202014
- 6. Reese, G. (2009). Cloud Application Architectures: Building Applications and Infrastructure in the Cloud. Sebastopol, CA: O'Reilly Media, Inc. (2009)

	CO/PO, PSO Mapping (3/2/1 indicates the strength of correlation) 3-Strong 2-Medium, 1-Weak Programme Outcomes (POs) and Programme Specific Outcomes PSOs'						
	PO1	PO2	PO3	PSO1	PSO2	PSO3	
CO1	1	1	2	1	1	3	
CO2	3	2	1	2	3	2	
CO3	1	1	2	1	3	3	
CO4	2	3	2	1	2	2	
CO5	1	2	1	2	1	1	
AVG	1.60	1.80	1.60	1.40	2.00	2.20	

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department: Computer Science and Engineering, R2024, CBCS

P24CS203 MULTICORE ARCHITECTURE AND PROGRAMMING Course Objectives					
Course Objectives	Т	Р	С		
	0	2	4		
1 To understand the need for multi-core processors, and their architecture.					
2 To understand the challenges in parallel and multithreaded programming.					
To learn about the various parallel programming paradigms,					
4 To develop multicore programs and design parallel solutions					
UNIT I MULTI-CORE PROCESSORS		9			
Single core to Multi-core architectures – SIMD and MIMD systems – Interconnect Symmetric and Distributed Shared Memory Architectures – Cache coherence – Farallel program design.			s –		
UNIT II PARALLEL PROGRAM CHALLENGES		9			
Performance – Scalability – Synchronization and data sharing – Data races – Syr (mutexes, locks, semaphores, barriers) – deadlocks and livelocks – communicatio (condition variables, signals, message queues and pipes).		•			
UNIT III SHARED MEMORY PROGRAMMING WITH OpenMP		9			
OpenMP Execution Model – Memory Model – OpenMP Directives – Work-sharing functions – Handling Data and Functional Parallelism – Handling Loops – Perform					
UNIT IV DISTRIBUTED MEMORY PROGRAMMING WITH MPI		9			
MPI program execution – MPI constructs – libraries – MPI send and receive – Po communication – MPI derived datatypes – Performance evaluation	nt-to-poin	t and Co	llective		
UNIT V PARALLEL PROGRAM DEVELOPMENT		9			
Case studies – n-Body solvers – Tree Search – OpenMP and MPI implementation	s and co	mparisor	١.		
PRACTICALS:	30				
 Write a simple Program to demonstrate an OpenMP Fork-Join Parallelism. Create a program that computes a simple matrix-vector multiplication b=Ax, either in C/C++. Use OpenMP directives to make it run in parallel. Create a program that computes the sum of all the elements in an array A (C/C++) or a program that finds the largest number in an array A. Use OpenMP directives to make it run in parallel. Write a simple Program demonstrating Message-Passing logic using OpenMP. Implement the All-Pairs Shortest-Path Problem (Floyd's Algorithm) Using OpenMP. Implement a program Parallel Random Number Generators using Monte Carlo Methods in OpenMP. Write a Program to demonstrate MPI-scatter-gather-and-all gather in C. Write a Program to demonstrate MPI-send-and-receive in C. Write a Program to demonstrate by performing-parallel-rank-with-MPI in C. 					
4. Write a simple Program demonstrating Message-Passing logic using OpenMP. 5. Implement the All-Pairs Shortest-Path Problem (Floyd's Algorithm) Using Open 6. Implement a program Parallel Random Number Generators using Monte Carlo 7. Write a Program to demonstrate MPI-broadcast-and-collective-communication 8. Write a Program to demonstrate MPI-scatter-gather-and-all gather in C.		in Openl	МР.		
4. Write a simple Program demonstrating Message-Passing logic using OpenMP. 5. Implement the All-Pairs Shortest-Path Problem (Floyd's Algorithm) Using Open 6. Implement a program Parallel Random Number Generators using Monte Carlo 7. Write a Program to demonstrate MPI-broadcast-and-collective-communication 8. Write a Program to demonstrate MPI-scatter-gather-and-all gather in C. 9. Write a Program to demonstrate MPI-send-and-receive in C.	n C.	in Openl	MP.		
4. Write a simple Program demonstrating Message-Passing logic using OpenMP. 5. Implement the All-Pairs Shortest-Path Problem (Floyd's Algorithm) Using Oper 6. Implement a program Parallel Random Number Generators using Monte Carlo 7. Write a Program to demonstrate MPI-broadcast-and-collective-communication 8. Write a Program to demonstrate MPI-scatter-gather-and-all gather in C. 9. Write a Program to demonstrate MPI-send-and-receive in C. 10. Write a Program to demonstrate by performing-parallel-rank-with-MPI in C.	n C.		MP.		
4. Write a simple Program demonstrating Message-Passing logic using OpenMP. 5. Implement the All-Pairs Shortest-Path Problem (Floyd's Algorithm) Using Open 6. Implement a program Parallel Random Number Generators using Monte Carlo 7. Write a Program to demonstrate MPI-broadcast-and-collective-communication 8. Write a Program to demonstrate MPI-scatter-gather-and-all gather in C. 9. Write a Program to demonstrate MPI-send-and-receive in C. 10. Write a Program to demonstrate by performing-parallel-rank-with-MPI in C. TOTAL PERIOD	n C.		MP.		
4. Write a simple Program demonstrating Message-Passing logic using OpenMP. 5. Implement the All-Pairs Shortest-Path Problem (Floyd's Algorithm) Using Open 6. Implement a program Parallel Random Number Generators using Monte Carlo 7. Write a Program to demonstrate MPI-broadcast-and-collective-communication 8. Write a Program to demonstrate MPI-scatter-gather-and-all gather in C. 9. Write a Program to demonstrate MPI-send-and-receive in C. 10. Write a Program to demonstrate by performing-parallel-rank-with-MPI in C. TOTAL PERIOD Course Outcomes	n C.		MP.		
4. Write a simple Program demonstrating Message-Passing logic using OpenMP. 5. Implement the All-Pairs Shortest-Path Problem (Floyd's Algorithm) Using Open 6. Implement a program Parallel Random Number Generators using Monte Carlo 7. Write a Program to demonstrate MPI-broadcast-and-collective-communication 8. Write a Program to demonstrate MPI-scatter-gather-and-all gather in C. 9. Write a Program to demonstrate MPI-send-and-receive in C. 10. Write a Program to demonstrate by performing-parallel-rank-with-MPI in C. TOTAL PERIOD Course Outcomes At the end of the course, the student will be able to	n C.		MP.		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

CO4 Design parallel programming solutions to common problems.

CO5 Compare and contrast programming for serial processors and programming for parallel processors

REFERENCES

- 1. Peter S. Pacheco, "An Introduction to Parallel Programming, Morgan-Kauffman/Elsevier, 2021.
- 2. Darryl Gove, "Multicore Application Programming for Windows, Linux, and Oracle Solaris, Pearson, 2011 (unit 2)
- 3. Michael J Quinn, "Parallel programming in C with MPI and OpenMP, Tata McGraw Hill, 2003.
- 4. Victor Alessandrini, Shared Memory Application Programming, 1st Edition, Concepts and Strategies in Multicore Application Programming, Morgan Kaufmann, 2015.
- 5. Yan Solihin, Fundamentals of Parallel Multicore Architecture, CRC Press, 2015.

CO/PO, PSO Mapping
(3/2/1 indicates the strength of correlation) 3-Strong 2-Medium, 1-Weak
Programme Outcomes (POs) and Programme Specific Outcomes PSOs'

		3	\ /	J 1		
	PO1	PO2	PO3	PSO1	PSO2	PSO3
CO1	1	2	3	4	5	6
CO2	1	1	1	2	1	2
CO3	2	1	-	-	2	2
CO4	1	-	2	1	1	2
CO5	1	2	1	2	3	1
AVG	1.80	1.00	1.50	1.25	1.60	1.80

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department: Computer Science and Engineering, R2024, CBCS

			_			Τ -
P2	24CS201	MACHINE LEARNING	L	T	P	С
			3	0	2	4
	<u> </u>	Course Objectives				
1	To understand the concepts and mathematical foundations of machine learning and types of problems tackled by machine learning					
2	To explore t	he different supervised learning techniques including ense	mble m	nethods		
3	To learn diff	erent aspects of unsupervised learning and reinforcement	learnin	g		
4	To learn the	role of probabilistic methods for machine learning				
5	To understa	and the basic concepts of neural networks and deep learning	ng			
UNIT	IINTRODUC	CTION AND MATHEMATICAL FOUNDATIONS			9	
Analy Optim	tical Geomet nization - Dec	s of Machine Learning Problems – Mathematical Foundation ry -Probability and Statistics- Bayesian Conditional Probabilision Theory - Information theory			lculus 8	k
UNIT	II SUPERVI	SED LEARNING			9	
Tree		Vector Machines –Kernel Methods -Instance based Methods –Decision Trees –ID3 – CART - Ensemble Methods –Forithms			•	
UNIT	III UNSUPE	RVISED LEARNING AND REINFORCEMENT LEARNING	}		9	
Redu	ction –Princi	tering Algorithms -K – Means – Hierarchical Clustering - C pal Component Analysis – Recommendation Systems – nts -Model based Learning – Temporal Difference Learning	EM alg			
UNIT	IV PROBAB	ILISTIC METHODS FOR LEARNING			9	
Proba	Introduction -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -Bayesian Belief Networks - Probabilistic Modelling of Problems -Inference in Bayesian Belief Networks – Probability Density Estimation - Sequence Models – Markov Models – Hidden Markov Models					
UNIT	V NEURAL	NETWORKS AND DEEP LEARNING			9	
Neural Networks – Biological Motivation- Perceptron – Multi-layer Perceptron – Feed Forward Network – Back Propagation-Activation and Loss Functions- Limitations of Machine Learning – Deep Learning– Convolution Neural Networks – Recurrent Neural Networks – Use cases						
1. Gi 2. Stu 3. Tak	Convolution Neural Networks – Recurrent Neural Networks – Use cases SUGGESTED ACTIVITIES: 1. Give an example from our daily life for each type of machine learning problem 2. Study at least 3 Tools available for Machine Learning and discuss pros & cons of each 3. Take an example of a classification problem. Draw different decision trees for the example and explain the pros and cons of each decision variable at each level of the tree					

4. Outline 10 machine learning applications in healthcare

- 5. Give 5 examples where sequential models are suitable.
- 6. Give at least 5 recent applications of CNN

PRACTICAL EXERCISES:

30 PERIODS

1. Implement a Linear Regression with a Real Dataset

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

(https://www.kaggle.com/harrywang/housing). Experiment with different features in building a model. Tune the model's hyperparameters.

- 2. Implement a binary classification model. That is, answers a binary question such as "Are houses in this neighborhood above a certain price?" (use data from exercise 1). Modify the classification threshold and determine how that modification influences the model. Experiment with different classification metrics to determine your model's effectiveness.
- 3. Classification with Nearest Neighbors. In this question, you will use the scikit-learn's KNN classifier to classify real vs. fake news headlines. The aim of this question is for you to read the scikit-learn API and get comfortable with training/validation splits. Use California Housing Dataset
- 4. In this exercise, you'll experiment with validation sets and test sets using the dataset. Split a training set into a smaller training set and a validation set. Analyze deltas between training set and validation set results. Test the trained model with a test set to determine whether your trained model is overfitting. Detect and fix a common training problem.
- 5. Implement the k-means algorithm using https://archive.ics.uci.edu/ml/datasets/Codon+usage dataset
- 6. Implement the Naïve Bayes Classifier using

https://archive.ics.uci.edu/ml/datasets/Gait+Classification dataset

- 7. Project (in Pairs) Your project must implement one or more machine learning algorithms and apply them to some data.
- a. Your project may be a comparison of several existing algorithms, or it may propose a new algorithm in which case you still must compare it to at least one other approach.
- b. You can either pick a project of your own design, or you can choose from the set of pre-defined projects.
- c. You are free to use any third-party ideas or code that you wish as long as it is publicly available.
- d. You must properly provide references to any work that is not your own in the write-up.
- e. Project proposal You must turn in a brief project proposal. Your project proposal should describe the idea behind your project. You should also briefly describe software you will need to write, and papers (2-3) you plan to read.

List of Projects (datasets available)

- 1. Sentiment Analysis of Product Reviews
- 2. Stock Prediction
- 3. Sales Forecasting
- 4. Music Recommendation
- 5. Handwriting Digit Classification
- 6. Fake News Detection
- 7. Sports Prediction
- 8. Object Detection
- 9. Disease Prediction

	TOTAL PERIODS	75			
	Course Outcomes				
At the	At the end of the course, the student will be able to				
CO1	Understand and outline problems for each type of machine learning				
CO2	Design a Decision tree and Random Forest for an application				
СОЗ	Implement Probabilistic Discriminative and Generative algorithms for an application and analyze the results.				
CO4	Use a tool to implement typical Clustering algorithms for different types of applications.				
CO5	Design and implement an HMM for a Sequence Model type of application and identify applications				

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

REFERENCES

- 1. Stephen Marsland, "Machine Learning: An Algorithmic Perspective", Chapman & Hall/CRC, 2nd Edition, 2014.
- 2. Kevin Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012
- 3. Ethem Alpaydin, "Introduction to Machine Learning", Third Edition, Adaptive Computation and Machine Learning Series, MIT Press, 2014
- 4. Tom M Mitchell, "Machine Learning", McGraw Hill Education, 2013.
- 5. Peter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", First Edition, Cambridge University Press, 2012.
- 6. Shai Shalev-Shwartz and Shai Ben-David, "Understanding Machine Learning: From Theory to Algorithms", Cambridge University Press, 2015
- 7. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2007.
- 8. Hal Daumé III, "A Course in Machine Learning", 2017 (freely available online)
- 9. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Springer, 2009 (freely available online)
- **10.** Aurélien Géron , Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 2nd Edition, o'reilly, (2017)

I COIII	recliniques to build intelligent Systems zna Edition, Orelliy, (2017)							
	CO/PO, PSO Mapping (3/2/1 indicates the strength of correlation) 3-Strong 2-Medium, 1-Weak Programme Outcomes (POs) and Programme Specific Outcomes PSOs'							
	P01 P02 P03 PS01 PS02 PS03							
CO1	2	1	3	1	1	2		
CO2	2	3	1	2	1	2		
CO3	1	1	2	1	-	2		
CO4	2	2	-	-	-	3		
CO5	3	3	1	1	1	3		
AVG	1.80	2.20	1.25	1.75	1.00	2.20		

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS

P2	100001	ADVANCED SOFTWARE ENGINEEDING	L	Т	Р	С
P24CS204		ADVANCED SOFTWARE ENGINEERING	3	0	0	3
		Course Objectives				
1	To understa	nd the rationale for software development process models	}			
2 To understand why the architectural design of software is important						
To understand the five important dimensions of dependability, namely, availability, reliability security, and resilience						safety,
To understand the basic notions of a web service, web service standards, and service-oriente architecture						∌d ———
5 To understand the different stages of testing from testing during development					tware s	ystem
UNIT	I SOFTWAR	E PROCESS & MODELING			9	
Const Requi	truction – Pro irements Eng	ss Models – Agility and Process – Scrum – XP – Kanban - totype Evaluation – Prototype Evolution – Modelling – Prir ineering – Scenario-based Modelling – Class-based Mode ioural Modelling.	nciples -	_		
UNIT	II SOFTWAF	RE DESIGN			9	
_	•	- Design Model – Software Architecture – Architectural Sty Design – User Experience Design – Design for Mobility –				_
UNIT	III SYSTEM	DEPENDABILITY AND SECURITY			9	
Reliak Engin Orgar	oility Measure eering Proce nizations – Se	ility Requirements – Fault-tolerant Architectures – Prograr ement – Safety Engineering – Safety-critical Systems – Sa sses – Safety Cases – Security Engineering – Security an ecurity Requirements – Secure System Design – Security ering – Cybersecurity – Sociotechnical Resilience – Resilie	fety Re d Depe Testing	quireme ndability and Ass	nts – Sa v – Safe surance	ty and
UNIT	IV SERVICE	ORIENTED SOFTWARE ENGINEERING, SYSTEMS ND REAL-TIME SOFTWARE ENGINEERING		9		
Service-oriented Architecture – RESTful Services – Service Engineering – Service Composition – Systems Engineering – Sociotechnical Systems – Conceptual Design – System Procurement – System Development – System Operation and Evolution – Real-time Software Engineering – Embedded System Design – Architectural Patterns for Real-time Software – Timing Analysis – Real-time Operating Systems.						stem
	V SOFTWAI AGEMENT	RE TESTING AND SOFTWARE CONFIGURATION			9	
Software Testing Strategy – Unit Testing – Integration Testing – Validation Testing – System Testing – Debugging – White-Box Testing – Basis Path Testing – Control Structure Testing – Black-Box Testing – Software Configuration Management (SCM) – SCM Repository – SCM Process – Configuration Management for Web and Mobile Apps.						
1. Coi 2. Des 3. Ma 4. Des	SUGGESTED ACTIVITIES 1. Comparatively analysing different Agile methodologies. 2. Describing the scenarios where 'Scrum' and 'Kanban' are used. 3. Mapping the data flow into suitable software architecture. 4. Developing behavioural representations for a class or component. 5. Implementing simple applications as RESTful service.					
		TOTAL PE	RIODS		45	

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

	Course Outcomes				
At the	At the end of the course, the student will be able to				
CO1	Identify appropriate process models based on the Project requirements				
CO2	Understand the importance of having a good Software Architecture.				
	Understand the five important dimensions of dependability, namely, availability, reliability, safety, security, and resilience.				
CO4	Understand the basic notions of a web service, web service standards, and service-oriented architecture				
CO5	Be familiar with various levels of Software testing				

REFERENCES

- 1. Software Engineering: A Practitioner's Approach, 9th Edition. Roger Pressman and Bruce Maxim, McGraw-Hill 2019.
- 2. Software Engineering, 10th Edition, Ian Somerville, Pearson Education Asia 2016.
- 3. Software Architecture In Practice, 3rd Edition, Len Bass, Paul Clements and Rick Kazman, Pearson India 2018
- 4. An integrated approach to Software Engineering, 3rd Edition, Pankaj Jalote, Narosa Publishing House, 2018
- 5. Fundamentals of Software Engineering, 5th Edition, Rajib Mall, PHI Learning Private Ltd, 2018

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department: Computer Science and Engineering, R2024, CBCS

P24CS205	TERM PAPER WRITING AND SEMINAR	L	Т	Р	С
P24C3203	TERM PAPER WRITING AND SEMINAR	0	0	2	1

In this course, students will develop their scientific and technical reading and writing skills that they need to understand and construct research articles. A term paper requires a student to obtain information from a variety of sources (i.e., Journals, dictionaries, reference books) and then place it in logically developed ideas. The work involves the following steps:

- 1. Selecting a subject, narrowing the subject into a topic
- 2. Stating an objective.
- 3. Collecting the relevant bibliography (atleast 15 journal papers)
- 4. Preparing a working outline.
- 5. Studying the papers and understanding the authors contributions and critically analysing each paper.
- 6. Preparing a working outline
- 7. Linking the papers and preparing a draft of the paper.
- 8. Preparing conclusions based on the reading of all the papers.
- 9. Writing the Final Paper and giving final Presentation

Please keep a file where the work carried out by you is maintained. Activities to be carried out

Activity	Instructions	Submission week	Evaluation
Selection of area of interest and Topic Stating an Objective	You are requested to select an area of interest, topic and state an objective	2 nd week	3 % Based on clarity of thought, current relevance and clarity in writing
Collecting Information about your area & topic	 List 1 Special Interest Groups or professional society List 2 journals List 2 conferences, symposia or workshops List 1 thesis title List 3 web presences (mailing lists, forums, news sites) List 3 authors who publish regularly in your area Attach a call for papers (CFP) from your area. 	3 rd week	3% (the selected information must be area specific and of international and national standard)

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

control of control in such			
Collection of	You have to provide a complete list	4 th week	6%
Journal papers in	of references you will be using- Based on		(the list of standard
the topic in the	your objective -Search various digital		papers and reason for
context of the	libraries and Google Scholar		selection)
objective – collect	When picking papers to read - try to:		
20 & then filter	Pick papers that are related to each		
	other in some ways and/or that are in the		
	same field so that you can write a		
	meaningful survey out of them,		
	Favour papers from well-known		
	journals and conferences,		
	• Favour "first" or "foundational"		
	papers in the field (as indicated in other		
	people's survey paper),		
	 Favour more recent papers, 		
	Pick a recent survey of the field so		
	you can quickly gain an overview,		
	• Find relationships with respect to		
	each other and to your topic area		
	(classification scheme/categorization)		
	Mark in the hard copy of papers		
	whether complete work or section/sections		
	of the paper are being		
	considered		
Reading and notes	Reading Paper Process	5 th week	8%
for first 5 papers	For each paper form a Table		(the table given should

indicate your

understanding of the

answering the following questions:

What is the main topic of the article?

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS

	 What was/were the main issue(s) the author said they want to discuss? Why did the author claim it was important? How does the work build on other's work, in the author's opinion? What simplifying assumptions does the author claim to be making? What did the author do? How did the author claim they were going to evaluate their work and compare it to others? What did the author say were the limitations of their research? What did the author say were the important directions for future research? Conclude with limitations/issues not addressed by the paper (from the perspective of your survey) 		paper and the evaluation is based on your conclusions about each paper)
Reading and notes for next5 papers	Repeat Reading Paper Process	6 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)
Reading and notes for final 5 papers	Repeat Reading Paper Process	7 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)
Draft outline 1 and Linking papers	Prepare a draft Outline, your survey goals, along with a classification / categorization diagram	8 th week	8% (this component will be evaluated based on the linking and classification among the papers)
Abstract	Prepare a draft abstract and give a presentation	9 th week	6% (Clarity, purpose and conclusion) 6% Presentation & Viva

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

Introduction Background	Write an introduction and background sections	10 th week	5%(clarity)
Sections of the paper	Write the sections of your paper based on the classification / categorization diagram in keeping with the goals of your survey	11thweek	10% (this component will be evaluated based on the linking and classification among the papers)
Your conclusions	Write your conclusions and future work	12th week	5% (conclusions – clarity and your ideas)
Final Draft	Complete the final draft of your paper	13th week	10% (formatting, English, Clarity and linking) 4% Plagiarism Check Report
Seminar	A brief 15 slides on your paper	14th & 15th week	10% (based on presentation

and Viva-voce)
TOTAL: 30 PERIODS

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

P24CS206	SOFTWARE ENGINEERING LABORATORY	L	T	Р	С
P24C3200	SOFTWARE ENGINEERING LABORATORY	3	0	2	4

Course Objectives

The Software Engineering Lab has been developed by keeping in mind the following objectives:

- To impart state-of-the-art knowledge on Software Engineering and UML in an interactivemanner through the Web.
- Present case studies to demonstrate practical applications of different concepts.
- Provide a scope to students where they can solve small, real-life problems.

LIST OF EXPERIMENTS

- 1. Write a Problem Statement to define a title of the project with bounded scope of project
- 2. Select relevant process model to define activities and related task set for assigned project
- 3. Prepare broad SRS (Software Requirement Specification) for the above selected projects
- 4. Prepare USE Cases and Draw Use Case Diagram using modelling Tool
- 5. Develop the activity diagram to represent flow from one activity to another for software development
- 6. Develop data Designs using DFD Decision Table & ER Diagram.
- 7. Draw class diagram, sequence diagram, Collaboration Diagram, State Transition Diagramfor the assigned project
- 8. Write Test Cases to Validate requirements of assigned project from SRS Document
- 9. Evaluate Size of the project using function point metric for the assigned project
- 10. Estimate cost of the project using COCOMO and COCOCMOII for the assigned project

TOTAL PERIODS	30

Course Outcomes

At the end of the course, the student will be able to

CO1 Can produce the requirements and use cases the client wants for the software being Produced

Participate in drawing up the project plan. The plan will include at least extent and work assessments of the project, the schedule, available resources, and risk management can model and specify the requirements of mid-range software and their architecture.

create and specify such a software design based on the requirement specification that the software can be implemented based on the design.

Can assess the extent and costs of a project with the help of several different assessment methods.

CO/PO, PSO Mapping

(3/2/1 indicates the strength of correlation) 3-Strong 2-Medium, 1-Weak Programme Outcomes (POs) and Programme Specific Outcomes PSOs'

	PO1	PO2	PO3	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3
CO2	2	3	3	3	2	2

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai) **Department: Computer Science and Engineering, R2024, CBCS**

CO3	3	1	2	2	1	2
CO4	2	3	1	2	-	-
CO5	2.5	2.5	2.25	2.5	2	2.34
AVG	3	3	3	3	3	3

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS

				_	_			
P24CS301		SECURITY PRACTICES	L	T	Р	С		
		Course Objectives	3	0	0	3		
1	To loarn the	Course Objectives core fundamentals of system and web security concepts						
2		•	works					
 To have through understanding in the security concepts related to networks To deploy the security essentials in IT Sector 								
4		sed to the concepts of Cyber Security and cloud security						
5	•	a detailed study of Privacy and Storage security and relate	d leeno					
	I SYSTEM S		u issue		9			
-A Cr	yptography p	security – Security attacks, services and mechanisms – Os primer- Intrusion detection system- Intrusion Prevention s study: OWASP - Top 10 Web Application Security Risks.		•				
UNIT	II NETWOR	K SECURITY			9			
Wirele	•	Intranet security- Local Area Network Security - Wirele etwork Security- Cellular Network Security - Mobile securit			-			
UNIT	III SECURIT	Y MANAGEMENT			9			
	m Managem	ty essentials for IT Managers- Security Management Syent-IT Security - Online Identity and User Management		-				
UNIT	IV CYBER	SECURITY AND CLOUD SECURITY			9			
Malwa	are Forensics	Disk Forensics – Network Forensics – Wireless Forensics – Mobile Forensics – Email Forensics- Best security pracagement – Establishing trust in IaaS, PaaS, and SaaS Clo	tices fo	r autom	ate Clou	ıd		
		AND STORAGE SECURITY			9			
Confli	cts in securitork Security -	rnet - Privacy Enhancing Technologies - Personal privacy y policies- privacy and security in environment monitoring Storage Area Network Security Devices - Risk manageme	system	s. Stora	ge Area			
		TOTAL PE	RIODS		45			
		Course Outcomes						
At the	end of the	course, the student will be able to						
CO1	Understand	the core fundamentals of system security						
CO2	Apply the se	ecurity concepts to wired and wireless networks						
CO3	Implement a	and Manage the security essentials in IT Sector						
CO4	Explain the	concepts of Cyber Security and Cyber forensics.						
CO5	Be aware of	Privacy and Storage security Issues.				· · · · · · · · · · · · · · · · · · ·		
REFE	RENCES							
1. Jol	nn R. Vacca,	Computer and Information Security Handbook, Third Editi	on, Els	evier 20	17			

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS

- 2. Michael E. Whitman, Herbert J. Mattord, Principles of Information Security, Seventh Edition, Cengage Learning, 2022
- 3. Richard E. Smith, Elementary Information Security, Third Edition, Jones and BartlettLearning, 2019
- 4. Mayor, K.K.Mookhey, Jacopo Cervini, Fairuzan Roslan, Kevin Beaver, Metasploit Toolkit for Penetration Testing, Exploit Development and Vulnerability Research, Syngress publications, Elsevier, 2007. ISBN: 978-1-59749-074-0
- 5. John Sammons, "The Basics of Digital Forensics- The Primer for Getting Started in Digital Forensics", Syngress, 2012
- 6. Cory Altheide and Harlan Carvey, "Digital Forensics with Open Source Tools",2011Syngress, ISBN: 9781597495875.
- 7. Siani Pearson, George Yee "Privacy and Security for Cloud Computing" Computer Communications and Networks, Springer, 2013.

Comm	iunications and r	vetworks, springe	31, 2013.								
	CO/PO, PSO Mapping (3/2/1 indicates the strength of correlation) 3-Strong 2-Medium, 1-Weak Programme Outcomes (POs) and Programme Specific Outcomes PSOs'										
	P01 P02 P03 PS01 PS02 PS03										
CO1	1	2	1	1	2	1					
CO2	2	1	3	1	1	2					
CO3	-	-	2	3	3	3					
CO4	2	2	1	2	1	3					
CO5	1	-	1	1	2	3					
AVG	1.50	1.67	1.60	1.60	1.80	2.40					

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS PROFESSIONAL ELECTIVES

SEMESTER II- ELECTIVE I

S. NO.	COURSE COURSE TITLE		CATE- GORY		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
	OODL		OOKI	L	Т	Р	PERIODS	
1.	P24CS207	Human Computer Interaction	PEC	3	0	0	3	3
2.	P24CS208	Cloud Computing Technologies	PEC	3	0	0	3	3
3.	P24CS209	Foundations of Data Science	PEC	3	0	0	3	3
4.	P24CS210	Wireless Communications	PEC	3	0	0	3	3
5.	P24CS211	Agile Methodologies	PEC	3	0	0	3	3
6.	P24CS212	Performance Analysis of Computer Systems	PEC	3	0	0	3	3
7.	P24CS213	Advanced Operating System	PEC	3	0	0	3	3
8.	P24CS214	Digital Image Processing	PEC	3	0	0	3	3

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS207

HUMAN COMPUTER INTERACTION

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To learn the foundations of Human Computer Interaction
- Understanding Interaction Styles and to become familiar with the design technologies for individuals and persons with disabilities.
- To understand the process of Evaluation of Interaction Design.
- To clarify the significance of task analysis for ubiquitous computing
- To get insight on web and mobile interaction.

UNIT I FOUNDATIONS OF HCI

9

Context of Interaction –Ergonomics - Designing Interactive systems – Understanding Users-cognition and cognitive frameworks, User Centred approaches Usability, Universal Usability, Understanding and conceptualizing interaction, Guidelines, Principles and Theories. Importance of User Interface: Definition-Importance of good design-Benefits of good design-Human-centered development and Evaluation-Human Performance models-A Brief history of screen design.

UNIT II INTERACTION STYLES

9

GUI: Popularity of graphics - The concept of direct manipulation - Graphical system - Characteristics - Web user - Interface Popularity - Characteristics and Principles of User Interface. Understanding interaction styles, Direct Navigation and Immersive environments, Fluid navigation, Expressive Human and Command Languages, Communication and Collaboration Advancing the user experience, Timely user Experience, Information search, Data Visualization Design process: Human Interaction with computers - Importance of Human Characteristics - Human Consideration - Human Interaction Speeds and Understanding Business Junctions.

UNIT III EVALUATION OF INTERACTION

9

Evaluation Techniques- assessing user experience- usability testing – Heuristic evaluation and walkthroughs, analytics predictive models. Cognitive models, Socio-organizational issues and stakeholder requirements, Communication and collaboration models

UNIT IV MODELS AND THEORIES

9

Task analysis, dialog notations and design, Models of the system, Modeling rich interaction, Ubiquitous computing

UNIT V WEB AND MOBILE INTERACTION

9

Hypertext, Multimedia and WWW, Designing for the web Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Use Transitions-Lookup patterns-Feedback patterns Mobile apps, Mobile navigation, content and control idioms, Multi-touch gestures, Inter- app integration, Mobile web

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

COURSE OUTCOMES:

CO1: Understand the basics of human computer interactions via usability engineering and cognitive modeling.

CO2: Understand the basic design paradigms, complex interaction styles.

CO3. Understand the models and theories for user interaction

CO4: Examine the evaluation of interaction designs and implementations.

CO5: Elaborate the above issues for web and mobile applications.

TOTAL: 45 PERIODS

REFERENCES

- 1. Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, NiklasElmqvist, "Designing the User Interface: Strategies for Effective Human-Computer Interaction", Sixth Edition, Pearson Education, 2016.
- 2. Alan Dix, Janet Finlay, G D Abowd and Russel Beale, "Human Computer Interaction", Pearson Education, Third Edition, 2004.
- 3. Helen Sharp Jennifer Preece Yvonne Rogers, "Interaction Design: Beyond Human-Computer Interaction", Wiley, 5th Edition, 2019.
- 4. Alan Cooper, Robert Reimann, David Cronin, Christopher Noessel, "About Face: The Essentials of Interaction Design", 4th Edition, Wiley, 2014.
- 5. Donald A. Norman, "Design of Everyday Things", MIT Press, 2013.
- 6. Wilbert O Galitz, "The Essential Guide to User Interface Design", Third Edition, Wiley India Pvt., Ltd., 2007.

СО			P	Os				
	PO1	PO2	PO3	PO4	PO5	PO6		
1	3	3	3	3	3	3		
2	1	-	1	2	2	1		
3	2	3	2	2	-	1		
4	2	3	1	2	-	2		
5	2	2	3	3	3	3		
Avg	2	2.75	2	2.4	2.67	2		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS208

CLOUD COMPUTING TECHNOLOGIES

LT P C 3 0 0 3

COURSE OBJECTIVES:

- To gain expertise in Virtualization, Virtual Machines and deploy practical virtualization solution
- To understand the architecture, infrastructure and delivery models of cloud computing.
- To explore the roster of AWS services and illustrate the way to make applications in AWS
- To gain knowledge in the working of Windows Azure and Storage services offered by Windows Azure
- To develop the cloud application using various programming model of Hadoop and Aneka

UNIT I VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE

Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines - Emulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines. Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization Management - Storage Virtualization - Network Virtualization- Implementation levels of virtualization - virtualization structure - virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management - Virtualization for data center automation

UNIT II CLOUD PLATFORM ARCHITECTURE

12

Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software- A Generic Cloud Architecture Design - Layered cloud Architectural Development - Architectural Design Challenges

UNIT III AWS CLOUD PLATFORM - IAAS

9

Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manager

UNIT IV PAAS CLOUD PLATFORM

9

Windows Azure: Origin of Windows Azure, Features, The Fabric Controller – First Cloud APP in Windows Azure- Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops

UNIT V PROGRAMMING MODEL

Ç

Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job —Developing Map Reduce Applications - Design of Hadoop file system —Setting up Hadoop Cluster- Aneka: Cloud Application Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

COURSE OUTCOMES:

CO1: Employ the concepts of virtualization in the cloud computing

CO2: Identify the architecture, infrastructure and delivery models of cloud computing

CO3: Develop the Cloud Application in AWS platform

CO4: Apply the concepts of Windows Azure to design Cloud Application

CO5: Develop services using various Cloud computing programming models.

TOTAL: 45 PERIODS

REFERENCES

1. Bernard Golden, Amazon Web Service for Dummies, John Wiley & Sons, 2013.

- 2. Raoul Alongi, AWS: The Most Complete Guide to Amazon Web Service from Beginner to Advanced Level, Amazon Asia- Pacific Holdings Private Limited, 2019.
- 3. Sriram Krishnan, Programming: Windows Azure, O'Reilly,2010.
- 4. Rajkumar Buyya, Christian Vacchiola, S.Thamarai Selvi, Mastering Cloud Computing, MCGraw Hill Education (India) Pvt. Ltd., 2013.
- 5. Danielle Ruest, Nelson Ruest, —Virtualization: A Beginner's Guidell, McGraw-Hill Osborne Media, 2009.
- 6. Jim Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.
- 7. John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, 2010
- 8. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", McGraw-Hill Osborne Media, 2009.
- 9. Tom White, "Hadoop: The Definitive Guide", Yahoo Press, 2012.

CO		POs							
	PO1	PO2	PO3	PO4	PO5	PO6			
1	-	-	-	2	2	1			
2	2	3	1	-	-	1			
3	3	-	3	-	1	3			
4	-	-	-	2	-	3			
5	3	2	-	-	-	-			
Avg	2.6	2.5	2	2	1.5	2			

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS209

FOUNDATIONS OF DATA SCIENCE

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To apply fundamental algorithms to process data.
- Learn to apply hypotheses and data into actionable predictions.
- Document and transfer the results and effectively communicate the findings using visualization techniques.
- To learn statistical methods and machine learning algorithms required for Data Science.
- To develop the fundamental knowledge and understand concepts to become a data science professional.

UNIT I INTRODUCTION TO DATA SCIENCE

9

Data science process – roles, stages in data science project – working with data from files – working with relational databases – exploring data – managing data – cleaning and sampling for modeling and validation – introduction to NoSQL.

UNIT II MODELING METHODS

9

Choosing and evaluating models – mapping problems to machine learning, evaluating clustering models, validating models – cluster analysis – K-means algorithm, Naïve Bayes – Memorization Methods – Linear and logistic regression – unsupervised methods.

UNIT III INTRODUCTION TO R

9

Reading and getting data into R – ordered and unordered factors – arrays and matrices – lists and data frames – reading data from files – probability distributions – statistical models in R - manipulating objects – data distribution.

UNIT IV MAP REDUCE

9

Introduction – distributed file system – algorithms using map reduce, Matrix-Vector Multiplication by Map Reduce – Hadoop - Understanding the Map Reduce architecture - Writing HadoopMapReduce Programs - Loading data into HDFS - Executing the Map phase - Shuffling and sorting - Reducing phase execution.

UNIT V DATA VISUALIZATION 9

Documentation and deployment – producing effective presentations – Introduction to graphical analysis – plot() function – displaying multivariate data – matrix plots – multiple plots in one window - exporting graph using graphics parameters - Case studies.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Obtain, clean/process and transform data.

CO2: Analyze and interpret data using an ethically responsible approach.

CO3: Use appropriate models of analysis, assess the quality of input, derive insight from results, and investigate potential issues.

CO4: Apply computing theory, languages and algorithms, as well as mathematical and statistical models, and the principles of optimization to appropriately formulate and use data analyses.

CO5: Formulate and use appropriate models of data analysis to solve business-related

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

challenges.

REFERENCES:

- 1. Nina Zumel, John Mount, "Practical Data Science with R", Manning Publications, 2014.
- 2. Mark Gardener, "Beginning R The Statistical Programming Language", John Wiley & Sons, Inc., 2012.
- 3. W. N. Venables, D. M. Smith and the R Core Team, "An Introduction to R", 2013.
- 4. Tony Ojeda, Sean Patrick Murphy, Benjamin Bengfort, Abhijit Dasgupta, "Practical Data Science Cookbook", Packt Publishing Ltd., 2014.
- 5. Nathan Yau, "Visualize This: The FlowingData Guide to Design, Visualization, and Statistics", Wiley, 2011.

	T							
СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	3	2	3	-	2	2		
2	-	-	2	3	-	-		
3	1	-	-	-	3	3		
4	2	1	-	3	-	-		
5	1	-	3	3	-	-		
Avg	1.75	1.5	2.7	3	2.5	2.5		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS210

WIRELESS COMMUNICATIONS

1003 1003

COURSE OBJECTIVES:

- To understand the basic concepts in cellular communication.
- To learn the characteristics of wireless channels.
- To understand the impact of digital modulation techniques in fading.
- To get exposed to diversity techniques in wireless communication.
- To acquire knowledge in multicarrier systems.

UNIT I CELLULAR CONCEPTS

9

Frequency Reuse – Channel Assignment Strategies – Handoff Strategies – Interference and system capacity- Co-Channel Interference- Adjacent Channel Interference – Trunking and Grade of service – Improving coverage & capacity in cellular systems-Cell Splitting- Sectoring- Repeaters for Range Extension-Microcell Zone Concept.

UNIT II THE WIRELESS CHANNEL

9

Overview of wireless systems – Physical modeling for wireless channels – Time and Frequency coherence – Statistical channel models – Capacity of wireless Channel- Capacity of Flat Fading Channel – Channel Side Information at Receiver – Channel Side Information at Transmitter and Receiver – Capacity comparisons – Capacity of Frequency Selective Fading channels.

UNIT III PERFORMANCE OF DIGITAL MODULATION OVER WIRELESS 9 CHANNELS

Performance of flat fading and frequency selective fading – Impact on digital modulation techniques — Outage Probability – Average Probability of Error — Combined Outage and Average Error Probability – Doppler Spread – Inter symbol Interference.

UNIT IV DIVERSITY TECHNIQUES

9

Realization of Independent Fading Paths – Receiver Diversity – Selection Combining – Threshold Combing – Maximal-Ratio Combining – Equal - Gain Combining – Capacity with Receiver diversity – Transmitter Diversity – Channel known at Transmitter – Channel unknownat Transmitter – The Alamouti Scheme– Transmit & Receive Diversity-MIMO Systems.

UNIT V MULTICARRIER MODULATION

9

Data Transmission using Multiple Carriers – Multicarrier Modulation with Overlapping Sub channels – Mitigation of Subcarrier Fading – Discrete Implementation of Multicarrier Modulation – Peak to average Power Ratio- Frequency and Timing offset.

SUGGESTED ACTIVITIES:

- 1: Survey on various features of cellular networks
- 2: Study the nature of cellular networks
- 3: A comparative study on the performance of different digital modulation techniques
- 4: Perform a review of various diversity techniques in wireless communication
- 5: Presentation on design of multicarrier systems for 5G

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

COURSE OUTCOMES:

CO1: Design solutions for cellular communication **CO2:** Determine the capacity of wireless channels

CO3: Analyze the performance of the digital modulation techniques in fading channels

CO4: Apply various diversity techniques in wireless communication

CO5: Design multicarrier systems in wireless communication

TOTAL: 45 PERIODS

REFERENCES:

- 1. Theodore.S. Rappaport, "Wireless Communications: Principles and Practice", 2nd Edition, Pearson Education, India, 2010.
- 2. Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2005.
- 3. David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication", Wiley Series in Telecommunications, Cambridge University Press, 2005.
- 4. Saad Z. Asif, "5G Mobile Communications Concepts and Technologies" CRC press 2019.
- 5. Keith Q. T. Zhang, "Wireless Communications: Principles, Theory and Methodology" 1st edition, John Wiley & Sons, 2016.
- 6. Ramjee Prasad, "OFDM for Wireless Communication Systems", Artech House, 2004.
- 6. Boris Lublinsky, Kevin T. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", John Wiley & Sons Inc., 2013.

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	-	-	2	2	3	2		
2	3	2	3	-	-	-		
3	2	-	-	2	3	3		
4	3	3	-	2	3	3		
5	2	3	3	2	3	3		
Avg	2.5	2.7	2.7	2	3	2.75		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS211

AGILE METHODOLOGIES

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To learn the fundamental principles and practices associated with each of the agile development methods
- To apply the principles and practices of agile software development on a project of interest and relevance to the student.
- To provide a good understanding of software design and a set of software technologies and APIs.
- To do a detailed examination and demonstration of Agile development and testing techniques.
- To understand Agile development and testing.

UNIT I AGILE SOFTWARE DEVELOPMENT

9

Basics and Fundamentals of Agile Process Methods, Values of Agile, Principles of Agile, stakeholders, Challenges. Lean Approach: Waste Management, Kaizen and Kanban, add processand products add value. Roles related to the lifecycle, differences between Agile and traditional plans, differences between Agile plans at different lifecycle phases. Testing plan links between testing, roles and key techniques, principles, understand as a means of assessing the initial status of a project/ How Agile helps to build quality

UNIT II AGILE AND SCRUM PRINCIPLES

9

Agile Manifesto, Twelve Practices of XP, Scrum Practices, Applying Scrum. Need of scrum, working of scrum, advanced Scrum Applications, Scrum and the Organization, scrum values

UNIT III AGILE PRODUCT MANAGEMENT

9

Communication, Planning, Estimation Managing the Agile approach Monitoring progress, Targeting and motivating the team, Managing business involvement, Escalating issue. Quality, Risk, Metrics and Measurements, Managing the Agile approach Monitoring progress, Targeting and motivating the team, Managing business involvement and Escalating issue

UNIT IV AGILE REQUIREMENTS AND AGILE TESTING

9

User Stories, Backlog Management. Agile Architecture: Feature Driven Development. Agile Risk Management: Risk and Quality Assurance, Agile Tools. Agile Testing Techniques, Test-Driven Development, User Acceptance Test

UNIT V AGILE REVIEW AND SCALING AGILE FOR LARGE PROJECTS

9

Agile Metrics and Measurements, The Agile approach to estimating and project variables, Agile Measurement, Agile Control: the 7 control parameters. Agile approach to Risk, The Agile approach to Configuration Management, The Atern Principles, Atern Philosophy, The rationale for using Atern, Refactoring, Continuous integration, Automated Build Tools. Scrum of Scrums, Team collaborations, Scrum, Estimate a Scrum Project, Track Scrum Projects, Communication in Scrum Projects, Best Practices to Manage Scrum.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

COURSE OUTCOMES:

CO1: Analyze existing problems with the team, development process and wider organization

CO2: Apply a thorough understanding of Agile principles and specific practices

CO3: Select the most appropriate way to improve results for a specific circumstance or need

CO4: Judge and craft appropriate adaptations to existing practices or processes depending upon analysis of typical problems

CO5: Evaluate likely successes and formulate plans to manage likely risks or problems

TOTAL: 45 PERIODS

REFERENCES

- 1. Robert C. Martin ,Agile Software Development, Principles, Patterns, and Practices Alan Apt Series (2011)
- 2. Succeeding with Agile: Software Development Using Scrum, Pearson (2010)
- 3. David J. Anderson and Eli Schragenheim, "Agile Management for Software Engineering: Applying the Theory of Constraints for Business Results, Prentice Hall, 2003.
- 4. Hazza and Dubinsky, "Agile Software Engineering, Series: Undergraduate Topics in Computer Science, Springer, 2009.
- 5. Craig Larman, "Agile and Iterative Development: A Managers Guide, Addison-Wesley, 2004.
- 6. Kevin C. Desouza, "Agile Information Systems: Conceptualization, Construction, and Management, Butterworth-Heinemann, 2007.

	CO-I O IVIA	ping							
СО	POs								
	PO1	PO2	PO3	PO4	PO5	PO6			
1	3	1	3	-	2	3			
2	2	-	3	3	1	3			
3	3	3 -	-	-	3	3			
4	2	-	1	2	3	3			
5	1	3	-	-	2	3			
Avg	2.2	2	2.3	2.5	2.2	3			

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS212 PERFORMANCE ANALYSIS OF COMPUTER SYSTEMS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the mathematical foundations needed for performance evaluation of computer systems
- To understand the metrics used for performance evaluation
- To understand the analytical modeling of computer systems
- To enable the students to develop new queuing analysis for both simple and complex systems
- To appreciate the use of smart scheduling and introduce the students to analytical techniques for evaluating scheduling policies

UNIT I OVERVIEW OF PERFORMANCE EVALUATION

9

Need for Performance Evaluation in Computer Systems – Overview of Performance Evaluation Methods – Introduction to Queuing – Probability Review – Generating Random Variables for Simulation – Sample Paths, Convergence and Averages – Little's Law and other Operational Laws – Modification for Closed Systems.

UNIT II MARKOV CHAINS AND SIMPLE QUEUES

9

Discrete-Time Markov Chains – Ergodicity Theory – Real World Examples – Google, Aloha – Transition to Continuous-Time Markov Chain – M/M/1.

UNIT III MULTI-SERVER AND MULTI-QUEUE SYSTEMS

9

Server Farms: M/M/k and M/M/k/k – Capacity Provisioning for Server Farms – Time Reversibility and Burke's Theorem – Networks of Queues and Jackson Product Form – Classed and Closed Networks of Queues.

UNIT IV REAL-WORLD WORKLOADS

9

Case Study of Real-world Workloads – Phase-Type Distributions and Matrix-Alalytic Methods – Networks with Time-Sharing Servers – M/G/1 Queue and the Inspection Paradox – Task Assignment Policies for Server Farms.

UNIT V SMART SCHEDULING IN THE M/G/1

9

Performance Metrics – Scheduling Non-Preemptive and Preemptive Non-Size-Based Policies - . Scheduling Non-Preemptive and Preemptive Size-Based Policies – Scheduling - SRPT and Fairness.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students should be able to

CO1: Identify the need for performance evaluation and the metrics used for it

CO2: Distinguish between open and closed queuing networks

CO3: Apply Little'e law and other operational laws to open and closed systems

CO4: Use discrete-time and continuous-time Markov chains to model real world systems

CO5: Develop analytical techniques for evaluating scheduling policies

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

REFERENCES:

- 1. K. S. Trivedi, "Probability and Statistics with Reliability, Queueing and Computer Science Applications II, John Wiley and Sons, 2001.
- 2. Krishna Kant, "Introduction to Computer System Performance Evaluation II, McGraw-Hill, 1992.
- 3. Lieven Eeckhout, "Computer Architecture Performance Evaluation Methodsl, Morgan and Claypool Publishers, 2010.
- 4. Mor Harchol Balter, "Performance Modeling and Design of Computer Systems Queueing Theory in ActionII, Cambridge University Press, 2013.
- 5. Paul J. Fortier and Howard E. Michel, "Computer Systems Performance Evaluation and PredictionII, Elsevier, 2003.
- 6. Raj Jain, "The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation and Modelingll, Wiley-Interscience, 1991.
- 7. Raj Jain, Art of Computer Systems Performance Analysis: Techniques For Experimental Design Measurements Simulation and Modeling,2nd edition, wiley, 2015

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	1	1	1	1	1	1		
2	2	2	3	2	2	1		
3	2	2	2		2			
4	1		3		3	1		
5	2	2	2	1	2			
Avg	1.60	1.75	2.20	1.33	2.00	1.00		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS213

ADVANCED OPERATING SYSTEM

LT P C 3 0 0 3

COURSE OBJECTIVES

- To get a comprehensive knowledge of the architecture of distributed systems.
- To understand the deadlock and shared memory issues and their solutions in distributed environments.
- To know the security issues and protection mechanisms for distributed environments.
- To get a knowledge of multiprocessor operating systems and database operating systems.

UNIT I INTRODUCTION

9

Architectures of Distributed Systems - System Architecture types - issues in distributed operating systems - communication networks - communication primitives. Theoretical Foundations - inherent limitations of a distributed system - lamport's logical clocks - vector clocks - causal ordering of messages - global state - cuts of a distributed computation - termination detection. Distributed Mutual Exclusion - introduction - the classification of mutual exclusion and associated algorithms - a comparative performance analysis.

UNIT II DISTRIBUTED DEADLOCK DETECTION AND RESOURCE MANAGEMENT 9

Distributed Deadlock Detection -Introduction - deadlock handling strategies in distributed systems – issues in deadlock detection and resolution – control organizations for distributed deadlock detection – centralized and distributed deadlock detection algorithms –hierarchical deadlock detection algorithms. Agreement protocols – introduction-the system model, a classification of agreement problems, solutions to the Byzantine agreement problem, applications of agreement algorithms. Distributed resource management: introduction-architecture – mechanism for building distributed file systems – design issues – log structured file systems.

UNIT III DISTRIBUTED SHARED MEMORY AND SCHEDULING

9

Distributed shared memory-Architecture— algorithms for implementing DSM — memory coherence and protocols — design issues. Distributed Scheduling — introduction — issues in load distributing — components of a load distributing algorithm — stability — load distributing algorithms — performance comparison — selecting a suitable load sharing algorithm — requirements for load distributing -task migration and associated issues. Failure Recovery and Fault tolerance: introduction— basic concepts — classification of failures — backward and forward error recovery, backward error recovery in concurrent systems — consistent set of checkpoints — synchronous and asynchronous checkpointing and recovery — checkpointing for distributed database systems- recovery in replicated distributed databases.

UNIT IV DATA SECURITY

9

Protection and security -preliminaries, the access matrix model and its implementations.-safety in matrix model- advanced models of protection. Data security – cryptography: Model ofcryptography, conventional cryptography- modern cryptography, private key cryptography, data encryption standard- public key cryptography – multiple encryption – authentication in distributed systems.

UNIT-V MULTIPROCESSOR AND DATABASE OPERATING SYSTEM

9

Multiprocessor operating systems - basic multiprocessor system architectures - interconnection networks for multiprocessor systems - caching - hypercube architecture. Multiprocessor Operating

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

System - structures of multiprocessor operating system, operating system design issues- threads-process synchronization and scheduling. Database Operating systems: Introduction- requirements of a database operating system Concurrency control: theoretical aspects – introduction, database systems – a concurrency control model of database systems- the problem of concurrency control – serializability theory- distributed database systems, concurrency control algorithms – introduction, basic synchronization primitives, lock based algorithms-timestamp based algorithms, optimistic algorithms – concurrency control algorithms: data replication.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After the completion of this course, student will be able to

CO1:Understand and explore the working of Theoretical Foundations of OS.

CO2: Analyze the working principles of Distributed Deadlock Detection and resource management

CO3:Understand the concepts of distributed shared memory and scheduling mechanisms

CO4:Understand and analyze the working of Data security

CO5:Apply the learning into multiprocessor system architectures.

REFERENCES:

- 1. Mukesh Singhal, Niranjan G.Shivaratri, "Advanced concepts in operating systems: Distributed, Database and multiprocessor operating systems", TMH, 2001
- 2. Andrew S.Tanenbaum, "Modern operating system", PHI, 2003
- 3. Pradeep K.Sinha, "Distributed operating system-Concepts and design", PHI, 2003.
- 4. Andrew S. Tanenbaum, "Distributed operating system", Pearson education, 2003.

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	1	3	2	2	1	3		
2	2	2	3	2	1	-		
3	1	1	-	3	2	1		
4	1	1	2	1	2	2		
5	-	-	-	-	-	-		
Avg	1.25	1.75	2.33	2.00	1.50	2.00		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS214

DIGITAL IMAGE PROCESSING

LT PC 3 0 0 3

COURSE OBJECTIVES:

- To study fundamental concepts of digital image processing.
- To understand and learn image processing operations and restoration.
- To use the concepts of Feature Extraction
- To study the concepts of Image Compression.
- To expose students to current trends in the field of image segmentation.

UNIT I INTRODUCTION

9

Examples of fields that use digital image processing, fundamental steps in digital image processing, components of image processing system. Digital Image Fundamentals: A simpleimage formation model, image sampling and quantization, basic relationships between pixels. Image enhancement in the spatial domain: Basic gray-level transformation, histogram processing, enhancement using arithmetic and logic operators, basic spatial filtering, smoothing, and sharpening

Suggested Activities:

- Discussion of Mathematical Transforms.
- Numerical problem solving using Fourier Transform.

spatial filters, combining the spatial enhancement methods.

- Numerical problem solving in Image Enhancement.
- External learning Image Noise and its types.

Suggested Evaluation Methods:

- Tutorial Image transforms.
- Assignments on histogram specification, histogram equalization and spatial filters.
- Quizzes on noise modeling.

UNIT II IMAGE RESTORATION

9

A model of the image degradation/restoration process, noise models, restoration in the presence of noise—only spatial filtering, Weiner filtering, constrained least squares filtering, geometric transforms; Introduction to the Fourier transform and the frequency domain, estimating the degradation function. Color Image Processing: Color fundamentals, color models, pseudo color image processing, basics of full—color image processing, color transforms, smoothing and sharpening, color segmentation

Suggested Activities:

- Discussion on Image Artifacts and Blur.
- Discussion of Role of Wavelet Transforms in Filter and Analysis.
- Numerical problem solving in Wavelet Transforms.
- External learning Image restoration algorithms.

Suggested Evaluation Methods:

- Tutorial Wavelet transforms.
- Assignment problems on order statistics and multi-resolution expansions.
- Quizzes on wavelet transforms.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

UNIT III FEATURE EXTRACTION

9

Detection of discontinuities – Edge linking and Boundary detection- Thresholding- -Edge based segmentation-Region based Segmentation- matching-Advanced optimal border and surface detection- Use of motion in segmentation. Image Morphology – Boundary descriptors- Regional descriptors.

Suggested Activities:

- External learning Feature selection and reduction.
- External learning Image salient features.
- Assignment on numerical problems in texture computation.

Suggested Evaluation Methods:

- Assignment problems on feature extraction and reduction.
- Quizzes on feature selection and extraction.

UNIT IV IMAGE COMPRESSION

9

Fundamentals, image compression models, error-free compression, lossy predictive coding, image compression standards Morphological Image Processing: Preliminaries, dilation, erosion, open and closing, hit or miss transformation, basic morphological algorithms

Suggested Activities:

- Flipped classroom on different image coding techniques.
- Practical Demonstration of EXIF format for given camera.
- Practical Implementing effects quantization, color change.
- Case study of Google's WebP image format.

Suggested Evaluation Methods:

- Evaluation of the practical implementations.
- Assignment on image file formats

UNIT V IMAGE SEGMENTATION

9

Detection of discontinuous, edge linking and boundary detection, thresholding, region-based segmentation. Object Recognition: Patterns and patterns classes, recognition based on decision-theoretic methods, matching, optimum statistical classifiers, neural networks, structural methods – matching shape numbers, string matching.

Suggested Activities:

• Flipped classroom on importance of segmentation.

Suggested Evaluation Methods:

Tutorial – Image segmentation and edge detection.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

COURSE OUTCOMES:

CO1: Apply knowledge of Mathematics for image processing operations

CO2: Apply techniques for image restoration.

CO3: Identify and extract salient features of images.

CO4: Apply the appropriate tools (Contemporary) for image compression and analysis.

CO5: Apply segmentation techniques and do object recognition.

TOTAL: 45 PERIODS

REFERENCES

- 1. Digital Image Processing, Rafeal C.Gonzalez, Richard E.Woods, Second Edition, Pearson Education/PHI., 2002
- 2. Digital Image Processing, Sridhar S, Second Edition, Oxford University Press, 2016
- 3. Introduction to Digital Image Processing with Matlab, Alasdair McAndrew, Thomson Course Technology, .Brooks/Cole 2004
- 4. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis and Machine Vision", Second Edition, Thompson Learning, 2007.
- 5. Digital Image Processing using Matlab, Rafeal C.Gonzalez, Richard E.Woods, Steven L. Eddins, Pearson Education. Second Edition, 2017

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	2	2	-	3	-	-		
2	2	-	3	3	2	3		
3	3	3	1	2	-	-		
4	3	-	-	2	3	3		
5	2	2	2	2	2	3		
Avg	2.4	2.3	2.5	2.4	2.3	3		

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS PROFESSIONAL ELECTIVES

SEMESTER II - ELECTIVE II

S. NO.	COURSE	COURSE TITLE	CATE- GORY		ERIC R W T	DS EEK P	TOTAL CONTACT PERIODS	CREDITS
1.	P24CS215	High Performance Computing for Big Data	PEC	3	0	0	3	3
2.	P24CS216	Information Retrieval Techniques	PEC	3	0	0	3	3
3.	P24CS217	Software Quality Assurance	PEC	3	0	0	3	3
4.	P24CS218	Autonomous Systems	PEC	3	0	0	3	3
5.	P24CS219	Web Analytics	PEC	3	0	0	3	3
6.	P24CS220	Cognitive Computing	PEC	3	0	0	3	3
7.	P24CS221	Quantum Computing	PEC	3	0	0	3	3
8.	P24CS222	Big Data Mining and Analytics	PEC	3	0	0	3	3

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS215 HIGH PERFORMANCE COMPUTING FOR BIG DATA

LT P C 3 0 0 3

COURSE OBJECTIVES:

- To learn the fundamental concepts of High Performance Computing.
- To learn the network & software infrastructure for high performance computing.
- To understand real time analytics using high performance computing.
- To learn the different ways of security perspectives and technologies used in HPC.
- To understand the emerging big data applications.

UNIT I INTRODUCTION

9

The Emerging IT Trends- IOT/IOE-Apache Hadoop for big data analytics-Big data into big insights and actions – Emergence of BDA discipline – strategic implications of big data – BDA Challenges – HPC paradigms – Cluster computing – Grid Computing – Cloud computing – Heterogeneous computing – Mainframes for HPC - Supercomputing for BDA – Appliances for BDA.

UNIT II NETWORK & SOFTWARE INFRASTRUCTURE FOR HIGH PERFORMANCE BDA 9

Design of Network Infrastructure for high performance BDA – Network Virtualization – Software Defined Networking – Network Functions Virtualization – WAN optimization for transfer of big data – started with SANs- storage infrastructure requirements for storing big data – FC SAN – IP SAN – NAS – GFS – Panasas – Luster file system – Introduction to cloud storage.

UNIT III REAL TIME ANALYTICS USING HIGH PERFORMANCE COMPUTING

Technologies that support Real time analytics – MOA: Massive online analysis – GPFS: General parallel file system – Client case studies – Key distinctions – Machine data analytics – operational analytics – HPC Architecture models – In Database analytics – In memory analytics

UNIT IV SECURITY AND TECHNOLOGIES

9

9

Security, Privacy and Trust for user – generated content: The challenges and solutions – Role of real time big data processing in the IoT – End to End Security Framework for big sensing data streams – Clustering in big data.

UNIT V EMERGING BIG DATA APPLICATIONS

Ś

TOTAL: 45 PERIODS

Deep learning Accelerators – Accelerators for clustering applications in machine learning - Accelerators for classification algorithms in machine learning – Accelerators for Big data Genome Sequencing

COURSE OUTCOMES:

Upon completion of the course, the student should be able to:

CO1: Understand the basics concepts of High Performance computing systems.

CO2: Apply the concepts of network and software infrastructure for high performance computing

CO3: Use real time analytics using high performance computing.

CO4: Apply the security models and big data applications in high performance computing

CO5: Understand the emerging big data applications.

REFERENCES:

1. Pethuru Raj, Anupama Raman, Dhivya Nagaraj and Siddhartha Duggirala, "High-Performance Big-Data Analytics: Computing Systems and Approaches", Springer, 1st

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

Edition, 2015.

- 2. "Big Data Management and Processing", Kuan-Ching Li, Hai Jiang, Albert Y. Zomaya, CRC Press,1st Edition,2017.
- 3. "High Performance Computing for Big Data: Methodologies and Applications", Chao wang ,CRC Press,1st Edition,2018
- 4. "High-Performance Data Mining And Big Data Analytics", Khosrow Hassibi, Create Space Independent Publishing Platform,!st Edition,2014
- 5. "High performance computing: Modern systems and practices", Thomas Sterling, Matthew Anderson, Morgan Kaufmann publishers,1st Edition,2017

WEB REFERENCES:

1. https://www.hpcwire.com/

ONLINE RESOURCES:

- 1. http://hpc.fs.uni-lj.si/sites/default/files/HPC_for_dummies.pdf
- 2. https://www.nics.tennessee.edu/computing-resources/what-is-hpc

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	2	2	3	1	-	-		
2		-	2	3	2	3		
3	1	-	1	-	1	3		
4	3	1	-	-	3	-		
5	1	-	-	2	3	-		
Avg	1.75	1.5	2	2	2.25	3		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS216

INFORMATION RETRIEVAL TECHNIQUES

LT P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the basics of information retrieval with pertinence to modeling, query operations and indexing
- To get an understanding of machine learning techniques for text classification and clustering.
- To understand the various applications of information retrieval giving emphasisto multimedia IR, web search
- To get an understanding of machine learning techniques for text classification and clustering.
- To understand the concepts of digital libraries

UNIT I INTRODUCTION: MOTIVATION

9

Basic Concepts – Practical Issues - Retrieval Process – Architecture - Boolean Retrieval – Retrieval Evaluation – Open-Source IR Systems–History of Web Search – Web Characteristics–The impact of the web on IR —IR Versus Web Search–Components of a Search engine.

UNIT II MODELING 9

Taxonomy and Characterization of IR Models – Boolean Model – Vector Model - Term Weighting – Scoring and Ranking –Language Models – Set Theoretic Models - Probabilistic Models – Algebraic Models – Structured Text Retrieval Models – Models for Browsing

UNIT III INDEXING 9

Static and Dynamic Inverted Indices – Index Construction and Index Compression. Searching - Sequential Searching and Pattern Matching. Query Operations -Query Languages – Query Processing - Relevance Feedback and Query Expansion - Automatic Local and Global Analysis – Measuring Effectiveness and Efficiency

UNIT IV EVALUATION AND PARALLEL INFORMATION RETRIEVAL

9

Traditional Effectiveness Measures – Statistics in Evaluation – Minimizing Adjudication Effect – Nontraditional Effectiveness Measures – Measuring Efficiency – Efficiency Criteria – Queueing Theory – Query Scheduling – Parallel Information Retrieval – Parallel Query Processing – MapReduce

UNIT V SEARCHING THE WEB

9

Searching the Web –Structure of the Web –IR and web search – Static and Dynamic Ranking – Web Crawling and Indexing – Link Analysis - XML Retrieval Multimedia IR: Models and Languages – Indexing and Searching Parallel and Distributed IR – Digital Libraries.

COURSE OUTCOMES:

CO1: Build an Information Retrieval system using the available tools.

CO2: Identify and design the various components of an Information Retrieval system.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

CO3: Categorize the different types of IR Models.

CO4: Apply machine learning techniques to text classification and clustering which is used for efficient Information Retrieval.

CO5: Design an efficient search engine and analyze the Web content structure.

TOTAL: 45 PERIODS

REFERENCES

- 1. Christopher D. Manning, Prabhakar Raghavan, Hinrich Schutze, "Introduction to Information Retrieval, Cambridge University Press, First South Asian Edition, 2008.
- 2. Stefan Buttcher, Implementing and Evaluating Search Engines, The MIT Press, Cambridge, Massachusetts London, England, 2016.
- 3. Ricardo Baeza Yates, Berthier Ribeiro Neto, "Modern Information Retrieval: The concepts and Technology behind Search (ACM Press Books), Second Edition, 2011.
- 4. Stefan Buttcher, Charles L. A. Clarke, Gordon V. Cormack, "Information Retrieval

			•					
СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	2	2	1	3	3	2		
2	1	1	1	3	2	1		
3	2	1	2	3	3	3		
4	1	2	2	1	2	3		
5	2	2	3	3	1	3		
Avg	1.60	1.60	1.80	2.60	2.20	2.40		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS217

SOFTWARE QUALITY ASSURANCE

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Be exposed to the software quality factors, Quality Assurance (SQA) architecture and SQA components.
- Understand the integration of SQA components into the project life cycle.
- Be familiar with the software quality infrastructure.
- Be exposed to the management components of software quality.
- Be familiar with the Quality standards, certifications and assessments

UNIT I INTRODUCTION TO SOFTWARE QUALITY & ARCHITECTURE

9

Need for Software quality – Software quality assurance (SQA) – Software quality factors- McCall's quality model – SQA system components – Pre project quality components – Development and quality plans.

SQA COMPONENTS AND PROJECT LIFE CYCLE

9

UNIT II

Integrating quality activities in the project life cycle – Reviews – Software Testing – Quality of software maintenance components – Quality assurance for external participants contribution – CASE tools for software quality Management.

UNIT III SOFTWARE QUALITY INFRASTRUCTURE

9

Procedures and work instructions – Supporting quality devices - Staff training and certification - Corrective and preventive actions – Configuration management – Software change control – Configuration management audit -Documentation control.

UNIT IV SOFTWARE QUALITY MANAGEMENT & METRICS

9

Project process control – Software quality metrics – Cost of software quality – Classical quality cost model – Extended model – Application and Problems in application of Cost model

UNIT V STANDARDS, CERTIFICATIONS & ASSESSMENTS

9

TOTAL: 45 PERIODS

Quality management standards – ISO 9001 and ISO 9000-3 –Capability Maturity Models – CMM and CMMI assessment methodologies - Bootstrap methodology – SPICE Project – SQA project process standards – Organization of Quality Assurance – Role of management in SQA – SQA units and other actors in SQA systems.

COURSE OUTCOMES:

CO1: Utilize the concepts of SQA in software development life cycle

CO2: Demonstrate their capability to adopt quality standards.

CO3: Assess the quality of software products.

CO4: Apply the concepts in preparing the quality plan & documents.

CO5: Ensure whether the product meets company's quality standards and client's expectations and demands

REFERENCES

1. Daniel Galin, "Software Quality Assurance", Pearson Publication, 2009.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

- 2. Alan C. Gillies, "Software Quality: Theory and Management", International Thomson Computer Press, 2011.
- 3. Kshirasagar Naim and Priyadarshi Tripathy," Software Testing and Quality Assurance Theory and Practice", John Wiley & Sons Inc., 2008
- 4. Mordechai Ben-Menachem "Software Quality: Producing Practical Consistent Software", International Thompson Computer Press, 2014

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	3	3	3	3	2	3		
2	2	2	2	3	2	3		
3	3	1	1	2	1	3		
4	2	2	2	3	2	1		
5	1	1	1	3	1	2		
Avg	2.20	1.80	1.80	2.80	1.60	2.40		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS218

AUTONOMOUS SYSTEMS

L T PC 3 0 0 3

COURSE OBJECTIVES:

- To impart knowledge on the functional architecture of autonomous vehicles
- To impart knowledge on Localization and mapping fundamentals
- To impart knowledge on process end effectors and robotic controls
- To learn Robot cell design, Robot Transformation and Sensors
- To learn Micro/Nano Robotic Systems

UNIT I INTRODUCTION AND FUNCTIONAL ARCHITECTURE

9

Functional architecture - Major functions in an autonomous vehicle system, Motion Modeling - Coordinate frames and transforms, point mass model, Vehicle modeling (kinematic and dynamic bicycle model - two-track models), Sensor Modeling - encoders, inertial sensors, GPS.

UNIT II PERCEPTION FOR AUTONOMOUS SYSTEMS

9

SLAM - Localization and mapping fundamentals, LIDAR and visual SLAM, Navigation — Global path planning, Local path planning, Vehicle control - Control structures, PID control, Linear quadratic regulator, Sample controllers.

UNIT III ROBOTICS INTRODUCTION, END EFFECTORS AND CONTROL 9

Robot anatomy-Definition, law of robotics, Simple problems Specifications of Robot-Speed of Robot-Robot joints and links-Robot classifications-Architecture of robotic systems, Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, cam type-Magnetic grippers- Vacuum grippers-Air operated grippers-Gripper force analysis-Gripper design-Simple problems- Robot controls-Point to point control, Continuous path control, Intelligent robotControl system for robot joint-Control actions-Feedback devices-Encoder, Resolver, LVDTMotion Interpolations- Adaptive control.

UNIT IV ROBOT TRANSFORMATIONS, SENSORS AND ROBOT CELL 9 DESIGN

Robot kinematics-Types- 2D, 3D Transformation-Scaling, Rotation, Translation- Homogeneous coordinates, multiple transformation-Simple problems. Sensors in robot – Touch sensors-Tactile, Robot work cell design and control-Sequence control, Operator interface, Safety monitoring devices in Robot-Mobile robot working principle, actuation using MATLAB, NXT Software.

UNIT V MICRO/NANO ROBOTICS SYSTEM

9

Micro/Nano robotics system overview-Scaling effect-Top down and bottom up approach Actuators of Micro/Nano robotics system-Nano robot communication techniques-Fabrication of micro/nano grippers-Wall climbing micro robot working principles-Biomimetic robot-Swarm robot-Nano robot in targeted drug delivery system.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

COURSE OUTCOMES:

CO1: Understand architecture and modeling of autonomous systems.

CO2: Employ localization mapping techniques for autonomous systems

CO3: Design solutions for autonomous systems control.

CO4: Analyze Robot Transformations, Sensors and Cell Design

CO5: Explain the working principles of Micro/Nano Robotic system

TOTAL: 45 PERIODS

REFERENCES

1. S.R. Deb, Robotics Technology and flexible automation, Tata McGraw-Hill Education., 2009

- 2. Mikell P Groover & Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, Industrial Robotics, Technology programming and Applications, McGraw Hill, 2012.
- 3. Karsten Berns, Ewald Puttkamer, Springer, Autonomous Land Vehicles: Steps towards Service Robots, 2009
- 4. Sebastian Thrun, Wolfram Burgard, Dieter Fox., Probabilistic robotics. MIT Press, 2005
- 5. Steven M. LaValle., Planning algorithms, Cambridge University Press, 2006
- 6. Daniel Watzenig and Martin Horn (Eds.), Automated Driving: Safer and More Efficient Future Driving, Springer, 2017
- 7. Markus Maurer, Autonomous driving: technical, legal and social aspects. Springer, 2016
- 8. Jha, Theory, Design and Applications of Unmanned Aerial Vehicles, CRC Press, 2016

СО	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
1	1	2	3	2	3	3	
2	2	1	2	3	2	2	
3	1	2	2	-	1	1	
4	2	1	2	2	2	-	
5	3	-	-	1	-	2	
Avg	1.80	1.50	2.25	2.00	2.00	2.00	

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS219 WEB ANALYTICS

LT PC 3 0 0 3

COURSE OBJECTIVES:

- To understand the Web analytics platform, and their evolution.
- To learn about the various Data Streams Data.
- To learn about the benefits of surveys and capturing of data
- To understand Common metrics of web as well as KPI related concepts.
- To learn about the various Web analytics versions.

UNIT I INTRODUCTION

9

Definition, Process, Key terms: Site references, Keywords and Key phrases; building block terms: Visit characterization terms, Content characterization terms, Conversion metrics; Categories: Offsite web, on site web; Web analytics platform, Web analytics evolution, Need for web analytics, Advantages, Limitations.

UNIT II DATA COLLECTION

9

Click stream Data: Web logs, Web Beacons, JavaScript tags, Packet Sniffing; Outcomes Data: E-commerce, Lead generation, Brand/Advocacy and Support; Research data: Mindset, Organizational structure, Timing; Competitive Data: Panel-Based measurement, ISP-based measurement, Search Engine data.

UNIT III QUALITATIVE ANALYSIS

9

Heuristic evaluations: Conducting a heuristic evaluation, Benefits of heuristic evaluations; Site Visits: Conducting a site visit, Benefits of site visits; Surveys: Website surveys, Post-visit surveys, creating and running a survey, Benefits of surveys. Capturing data: Web logs or JavaScript's tags, Separate data serving and data capture, Type and size of data, Innovation, Integration, Selecting optimal web analytic tool, Understanding click stream data quality, Identifying unique page definition, Using cookies, Link coding issues.

UNIT IV WEB METRICS

9

Common metrics: Hits, Page views, Visits, Unique visitors, Unique page views, Bounce, Bounce rate, Page/visit, Average time on site, New visits; Optimization (e-commerce, non e-commerce sites): Improving bounce rates, Optimizing adwords campaigns; Real time report, Audience report, Traffic source report, Custom campaigns, Content report, Google analytics, Introduction to KPI, characteristics, Need for KPI, Perspective of KPI, Uses of KPI. Relevant Technologies: Internet & TCP/IP, Client / Server Computing, HTTP (Hypertext Transfer Protocol), Server Log Files & Cookies, Web Bugs.

UNIT V WEB ANALYTICS 2.0

9

Web analytics 1.0, Limitations of web analytics 1.0, Introduction to analytic 2.0, Competitive intelligence analysis: CI data sources, Toolbar data, Panel data, ISP data, Search engine data, Hybrid data, Website traffic analysis: Comparing long term traffic trends, Analyzing competitive site overlap and opportunities. Google Analytics: Brief introduction and working, Adwords, Benchmarking, Categories of traffic: Organic traffic, Paid traffic; Google website optimizer, Implementation technology, Limitations, Performance concerns, Privacy issues.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon completion of this course, the students should be able to:

CO1:Understand the Web analytics platform, and their evolution.

CO2:Use the various Data Streams Data.

CO3:Know how the survey of capturing of data will benefit.

CO4:Understand Common metrics of web as well as KPI related concepts.

CO5: Apply various Web analytics versions in existence.

REFERENCES:

- 1. Clifton B., Advanced Web Metrics with Google Analytics, Wiley Publishing, Inc.2nd ed, 2012.
- 2. Kaushik A., Web Analytics 2.0, The Art of Online Accountability and Science of Customer Centricity, Wiley Publishing, Inc. 1st ed, 2010.
- 3. Sterne J., Web Metrics: Proven methods for measuring web site success, John Wiley and Sons, 2002

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	3	-	3	2	3	2		
2	2	2	3	1	1	1		
3	3	-	3	2	2	2		
4	1	2	3	1	1	1		
5	2	-	3	2	2	1		
Avg	2.20	2.00	3.00	1.60	1.80	1.40		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS220

COGNITIVE COMPUTING

L T PC 3 0 0 3

COURSE OBJECTIVES:

- To familiarize Use the Innovation Canvas to justify potentially successful products.
- To learn various ways in which to develop a product idea.
- To understand about how Big Data can play vital role in Cognitive Computing
- To know about the business applications of Cognitive Computing
- To get into all applications of Cognitive Computing

UNIT I FOUNDATION OF COGNITIVE COMPUTING

9

Foundation of Cognitive Computing: cognitive computing as a new generation, the uses of cognitive systems, system cognitive, gaining insights from data, Artificial Intelligence as the foundation of cognitive computing, understanding cognition Design Principles for Cognitive Systems: Components of a cognitive system, building the corpus, bringing data into cognitive system, machine learning, hypotheses generation and scoring, presentation, and visualization services

UNIT II NATURAL LANGUAGE PROCESSING IN COGNITIVE SYSTEMS

Natural Language Processing in support of a Cognitive System: Role of NLP in a cognitive system, semantic web, Applying Natural language technologies to Business problems Representing knowledge in Taxonomies and Ontologies: Representing knowledge, Defining Taxonomies and Ontologies, knowledge representation, models for knowledge representation, implementation Considerations

UNIT III BIG DATA AND COGNITIVE COMPUTING

9

9

Relationship between Big Data and Cognitive Computing: Dealing with human-generated data, defining big data, architectural foundation, analytical data warehouses, Hadoop, data in motion and streaming data, integration of big data with traditional data Applying Advanced Analytics to cognitive computing: Advanced analytics is on a path to cognitive computing, Key capabilities in advanced analytics, using advanced analytics to create value, Impact of open source tools on advanced analytics

UNIT IV BUSINESS IMPLICATIONS OF COGNITIVE COMPUTING

9

Preparing for change ,advantages of new disruptive models , knowledge meaning to business, difference with a cognitive systems approach , meshing data together differently, using business knowledge to plan for the future , answering business questions in new ways , building business specific solutions , making cognitive computing a reality , cognitive application changing the market The process of building a cognitive application: Emerging cognitive platform, defining the objective, defining the domain, understanding the intended users and their attributes, questions and exploring insights, training and testing

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

UNIT V APPLICATION OF COGNITIVE COMPUTING

9

Building a cognitive health care application: Foundations of cognitive computing for healthcare, constituents in healthcare ecosystem, learning from patterns in healthcare Data, Building on a foundation of big data analytics, cognitive applications across the health care eco system, starting with a cognitive application for healthcare, using cognitive applications to improve health and wellness, using a cognitive application to enhance the electronic medical record Using cognitive application to improve clinical teaching

COURSE OUTCOMES:

CO1: Explain applications in Cognitive Computing.

CO2: Describe Natural language processor role in Cognitive computing.

CO3: Explain future directions of Cognitive Computing

CO4: Evaluate the process of taking a product to market

CO5: Comprehend the applications involved in this domain.

TOTAL:45 PERIODS

REFERENCES

- 1. Judith H Hurwitz, Marcia Kaufman, Adrian Bowles, "Cognitive computing and Big Data Analytics", Wiley, 2015
- 2. Robert A. Wilson, Frank C. Keil, "The MIT Encyclopedia of the Cognitive Sciences", The MIT Press, 1999.
- 3. Noah D. Goodman, Joshua B. Tenenbaum, The ProbMods Contributors, "Probabilistic Models of Cognition", Second Edition, 2016, https://probmods.org/.

CO		POs							
	PO1	PO2	PO3	PO4	PO5	PO6			
1	1	3	2	-	2	-			
2	2	-	3	1	3	-			
3	1	2	-	-	3	-			
4	-	-	2	2	1	1			
5	2	2	1	-	1	2			
Avg	1.5	2.3	2	1.5	2	1.5			

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS220 QUANTUM COMPUTING

LTPC 3 0 0 3

COURSE OBJECTIVES:

- To introduce the building blocks of Quantum computers and highlight the paradigm change between conventional computing and quantum computing
- To understand the Quantum state transformations and the algorithms
- To understand entangled quantum subsystems and properties of entangled states
- To explore the applications of quantum computing

UNIT I QUANTUM BUILDING BLOCKS

9

The Quantum Mechanics of Photon Polarization, Single-Qubit Quantum Systems, Quantum State Spaces, Entangled States, Multiple-Qubit Systems, Measurement of Multiple-Qubit States, EPR Paradox and Bell's Theorem, Bloch sphere

UNIT II QUANTUM STATE TRANSFORMATIONS

9

Unitary Transformations, Quantum Gates, Unitary Transformations as Quantum Circuits, Reversible Classical Computations to Quantum Computations, Language for Quantum Implementations.

UNIT III QUANTUM ALGORITHMS

9

Computing with Superpositions, Quantum Subroutines, Quantum Fourier Transformations, Shor's Algorithm and Generalizations, Grover's Algorithm and Generalizations

UNIT IV ENTANGLED SUBSYSTEMS AND ROBUST QUANTUM COMPUTATION 9

Quantum Subsystems, Properties of Entangled States, Quantum Error Correction, Graph states and codes, CSS Codes, Stabilizer Codes, Fault Tolerance and Robust Quantum Computing

UNIT V QUANTUM INFORMATION PROCESSING

9

Limitations of Quantum Computing, Alternatives to the Circuit Model of Quantum Computation, Quantum Protocols, Building Quantum, Computers, Simulating Quantum Systems, Bell states. Quantum teleportation. Quantum Cryptography, no cloning theorem

COURSE OUTCOMES:

At the end of the course, the student will be able to

CO1:Understand the basic principles of quantum computing.

CO2:Gain knowledge of the fundamental differences between conventional computing and quantum computing.

CO3:Understand several basic quantum computing algorithms.

CO4:Understand the classes of problems that can be expected to be solved well by quantum computers.

CO5: Simulate and analyze the characteristics of Quantum Computing Systems.

TOTAL: 45 PERIODS

REFERENCES:

- 1. John Gribbin, Computing with Quantum Cats: From Colossus to Qubits, 2021
- 2. William (Chuck) Easttom, Quantum Computing Fundamentals, 2021
- 3. Parag Lala, Quantum Computing, 2019

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

- 4. Eleanor Rieffel and Wolfgang Polak, QUANTUM COMPUTING A Gentle Introduction, 2011
- 5. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge University Press.2002
- 6. Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II: Basic Tools and Special Topics, World Scientific. 2004
- 7. Pittenger A. O., An Introduction to Quantum Computing Algorithms 2000

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	1	2	3	-	1	-		
2	1	2	3	-	2	-		
3	-	1	3	2	3	2		
4	2	-	2	2	1	3		
5	3	-	1	2	3	3		
Avg	1.75	1.7	2.4	2	2	2.73		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS221

BIG DATA MINING AND ANALYTICS

LT PC 3 0 0 3

COURSE OBJECTIVES:

- To understand the computational approaches to Modeling, Feature Extraction
- To understand the need and application of Map Reduce
- To understand the various search algorithms applicable to Big Data
- To analyze and interpret streaming data
- To learn how to handle large data sets in main memory and learn the various clustering techniques applicable to Big Data

UNIT I DATA MINING AND LARGE SCALE FILES

9

Introduction to Statistical modeling – Machine Learning – Computational approaches to modeling – Summarization – Feature Extraction – Statistical Limits on Data Mining - Distributed File Systems – Map-reduce – Algorithms using Map Reduce – Efficiency of Cluster Computing Techniques.

UNIT II SIMILAR ITEMS

9

Nearest Neighbor Search – Shingling of Documents – Similarity preserving summaries – Locality sensitive hashing for documents – Distance Measures – Theory of Locality Sensitive Functions – LSH Families – Methods for High Degree of Similarities.

UNIT III MINING DATA STREAMS

9

Stream Data Model – Sampling Data in the Stream – Filtering Streams – Counting Distance Elements in a Stream – Estimating Moments – Counting Ones in Window – Decaying Windows.

UNIT IV LINK ANALYSIS AND FREQUENT ITEMSETS

9

Page Rank – Efficient Computation - Topic Sensitive Page Rank – Link Spam – Market Basket Model – A-priori algorithm – Handling Larger Datasets in Main Memory – Limited Pass Algorithm – Counting Frequent Item sets.

UNIT V CLUSTERING

9

Introduction to Clustering Techniques – Hierarchical Clustering –Algorithms – K-Means – CURE – Clustering in Non – Euclidean Spaces – Streams and Parallelism – Case Study: Advertising on the Web – Recommendation Systems.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

CO1: Design algorithms by employing Map Reduce technique for solving Big Data problems.

CO2: Design algorithms for Big Data by deciding on the apt Features set .

CO3: Design algorithms for handling petabytes of datasets

CO4: Design algorithms and propose solutions for Big Data by optimizing main memory consumption

CO5: Design solutions for problems in Big Data by suggesting appropriate clustering techniques.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

REFERENCES:

- 1. Jure Leskovec, AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 3rd Edition, 2020.
- 2. Jiawei Han, MichelineKamber, Jian Pei, "Data Mining Concepts and Techniques", Morgan Kaufman Publications, Third Edition, 2012.
- 3. Ian H.Witten, Eibe Frank "Data Mining Practical Machine Learning Tools and Techniques", Morgan Kaufman Publications, Third Edition, 2011.
- 4. David Hand, HeikkiMannila and Padhraic Smyth, "Principles of Data Mining", MIT PRESS, 2001

WEB REFERENCES:

- 1. https://swayam.gov.in/nd2_arp19_ap60/preview
- 2. https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/106104189/lec1.pdf

ONLINE RESOURCES:

- https://examupdates.in/big-data-analytics/
- 2. https://www.tutorialspoint.com/big_data_analytics/index.htm
- 3. https://www.tutorialspoint.com/data_mining/index.htm

				<u> </u>			
СО	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
1	-	-	-	2	3	3	
2	-	-	-	-	2	2	
3	-	-	-	2	3	3	
4	1	-	2	2	3	3	
5	2	3	2	2	3	3	
Avg	1.5	3	2	2	2.8	2.8	

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS PROFESSIONAL ELECTIVES

SEMESTER III - ELECTIVE III

S. NO.	COURSE COURSE TITLE		CATE- GORY		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
				L	T	Р	PERIODS	
1.	P24CS303	Mobile and Pervasive Computing	PEC	3	0	0	3	3
2.	P24CS304	Web Services and API Design	PEC	3	0	0	3	3
3.	P24CS305	Data Visualization Techniques	PEC	3	0	0	3	3
4.	P24CS306	Compiler Optimization Techniques	PEC	3	0	0	3	3
5.	P24CS307	Formal Models of Software Systems	PEC	3	0	0	3	3
6.	P24CS308	Robotics	PEC	3	0	0	3	3
7.	P24CS309	Natural Language Processing	PEC	2	0	2	4	3
8.	P24CS310	GPU Computing	PEC	3	0	0	3	3

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS303

MOBILE AND PERVASIVE COMPUTING

LTPC 3003

COURSE OBJECTIVES:

- To understand the basics of Mobile Computing and Personal Computing
- To learn the role of cellular networks in Mobile and Pervasive Computing
- To expose to the concept of sensor and mesh networks
- To expose to the context aware and wearable computing
- To learn to develop applications in mobile and pervasive computing environment

UNIT I INTRODUCTION

9

Differences between Mobile Communication and Mobile Computing – Contexts and Names – Functions – Applications and Services – New Applications – Making Legacy Applications Mobile Enabled – Design Considerations – Integration of Wireless and Wired Networks – Standards Bodies – Pervasive Computing – Basics and Vision – Principles of Pervasive Computing – Categories of Pervasive Devices

UNIT II 3G AND 4G CELLULAR NETWORKS

9

Migration to 3G Networks – IMT 2000 and UMTS – UMTS Architecture – User Equipment – Radio Network Subsystem – UTRAN – Node B – RNC functions – USIM – Protocol Stack – CS and PS Domains – IMS Architecture – Handover – 3.5G and 3.9G a brief discussion – 4G LAN and Cellular Networks – LTE – Control Plane – NAS and RRC – User Plane – PDCP, RLC and MAC – WiMax IEEE 802.16d/e – WiMax Internetworking with 3GPP

UNIT III SENSOR AND MESH NETWORKS

9

Sensor Networks – Role in Pervasive Computing – In Network Processing and Data Dissemination – Sensor Databases – Data Management in Wireless Mobile Environments – Wireless Mesh Networks – Architecture – Mesh Routers – Mesh Clients – Routing – Cross Layer Approach – Security Aspects of Various Layers in WMN – Applications of Sensor and Mesh networks

UNIT IV CONTEXT AWARE COMPUTING & WEARABLE COMPUTING

9

Adaptability – Mechanisms for Adaptation - Functionality and Data – Transcoding – Location Aware Computing – Location Representation – Localization Techniques – Triangulation and Scene Analysis – Delaunay Triangulation and Voronoi graphs – Types of Context – Role of Mobile Middleware – Adaptation and Agents – Service Discovery Middleware Health BAN- Medical and Technological Requirements-Wearable Sensors-Intra-BAN communications

UNIT V APPLICATION DEVELOPMENT

9

Three tier architecture - Model View Controller Architecture - Memory Management - Information Access Devices - PDAs and Smart Phones - Smart Cards and Embedded Controls - J2ME - Programming for CLDC - GUI in MIDP - Application Development ON Android and iPhone

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

COURSE OUTCOMES:

CO1: Design a basic architecture for a pervasive computing environment

CO2: Design and allocate the resources on the 3G-4G wireless networks

CO3: Analyze the role of sensors in Wireless networks

CO4: Work out the routing in mesh network

CO5: Deploy the location and context information for application development

CO6: Develop mobile computing applications based on the paradigm of context aware computing and wearable computing

TOTAL:45 PERIODS

REFERENCES

- 1. Asoke K Talukder, Hasan Ahmed, Roopa R Yavagal, "Mobile Computing: Technology, Applications and Service Creation", 2nd ed, Tata McGraw Hill, 2017.
- 2. Reto Meier, "Professional Android 2 Application Development", Wrox Wiley, 2010.
- 3. Pei Zheng and Lionel M Li, 'Smart Phone & Next Generation Mobile Computing', Morgan Kaufmann Publishers, 2006.
- 4. Frank Adelstein, 'Fundamentals of Mobile and Pervasive Computing', TMH, 2005
- 5. Jochen Burthardt et al, 'Pervasive Computing: Technology and Architecture of Mobile Internet Applications', Pearson Education, 2003
- 6. Feng Zhao and Leonidas Guibas, 'Wireless Sensor Networks', Morgan Kaufmann Publishers, 2004
- 7. Uwe Hansmaan et al, 'Principles of Mobile Computing', Springer, 2nd edition, 2006
- 8. Reto Meier, "Professional Android 2 Application Development", Wrox Wiley, 2010.
- 9. Mohammad s. Obaidat et al, "Pervasive Computing and Networking", John wiley, 2011
- 10. Stefan Poslad, "Ubiquitous Computing: Smart Devices, Environments and Interactions", Wiley, 2009
- 11. Frank Adelstein Sandeep K. S. Gupta Golden G. Richard III Loren Schwiebert "Fundamentals of Mobile and Pervasive Computing, ", McGraw-Hill, 2005

СО	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
1	3	3	1	3	1	3	
2	2	2	2	2	2	2	
3	1	3	1	1	2	2	
4	1	2	2	2	1	1	
5	2		2	1	2	2	
Avg	1.80	2.50	1.60	1.80	1.60	2.00	

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS304 WEB SERVICES AND API DESIGN

L T PC 3 0 0 3

COURSE OBJECTIVES:

- To learn the basics of Web service.
- To become familiar with the Web Services building blocks
- To learn to work with RESTful web services.
- To implement the RESTful web services.
- To understand resource oriented Architecture.

UNIT I INTRODUCTION TO WEB SERVICE

9

Overview – Web service-Architecture – Service-Oriented Architecture (SOA), Architecting Web Services: Web Services Technology Stack, Logical Architectural View, Deployment Architectural View, and Process Architectural View.

UNIT II WEB SERVICE BUILDING BLOCKS

9

Introduction to SOAP: SOAP Syntax- Sending SOAP Messages - SOAP Implementations - Introduction to WSDL: WSDL Syntax - SOAP Binding - WSDL Implementations - Introduction to UDDI: The UDDI API - Implementations - The Future of UDDI

UNIT III RESTFUL WEB SERVICES

9

Programmable Web - HTTP: Documents in Envelopes - Method Information - Scoping Information - The Competing Architectures - Technologies on the Programmable Web -Leftover Terminology - Writing Web Service Clients: The Sample Application - Making the Request: HTTP Libraries - Processing the Response: XML Parsers - JSON Parsers: Handling Serialized Data - Clients Made Easy with WADL.

UNIT IV IMPLEMENTATION OF RESTFUL WEB SERVICES

9

Introducing the Simple Storage Service - Object-Oriented Design of S3 - Resources - HTTP Response Codes Resource- URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface – Spring Web Services – Spring MVC Components - Spring Web Flow - A Service Implementation using Spring Data REST.

UNIT V RESOURCE ORIENTED ARCHITECTURE

9

Resource- URIs - Addressability - Statelessness - Representations - Links and Connectedness - The Uniform Interface- Designing Read-Only Resource-Oriented Services : Resource Design - Turning Requirements Into Read-Only Resources - Figure Out the Data Set- Split the Data Set into Resources- Name the Resources - Design Representation- Link the Resources to Each Other- The HTTP Response

COURSE OUTCOMES:

CO1: Explain how to write XML documents.

CO2: Apply the web service building blocks such as SOAP, WSDL and UDDI

CO3: Describe the RESTful web services.

CO4: Implement the RESTful web service with Spring Boot MVC

CO5: Discuss Resource-oriented Architecture.

TOTAL: 45 PERIODS

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

REFERENCES

- 1. Leonard Richardson and Sam Ruby, RESTful Web Services, O'Reilly Media, 2007
- 2. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers, 2005.
- 3. Lindsay Bassett, Introduction to JavaScript Object Notation, O'Reilly Media, 2015
- 4. Craig Walls, "Spring in Action, Fifth Edition", Manning Publications, 2018
- 5. Raja CSP Raman, Ludovic Dewailly, "Building A RESTful Web Service with Spring 5", Packt Publishing, 2018.
- 6. Bogunuva Mohanram Balachandar, "Restful Java Web Services, Third Edition: A pragmatic guide to designing and building RESTful APIs using Java", Ingram short title, 3rd Edition, 2017.
- 7. Mario-Leander Reimer, "Building RESTful Web Services with Java EE 8: Create modern RESTful web services with the Java EE 8 API", Packt publishing, 2018.

OO 1 C mapping									
СО		POs							
	PO1	PO2	PO3	PO4	PO5	PO6			
1	1	3	3	-	-	-			
2	1	-	3	3	1	2			
3	-	3	3	-	-	-			
4	1	-	2	3	1	2			
5	1	-	1	-	1	-			
Avg	1	3	2.4	3	1	2			

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS305

DATA VISUALIZATION TECHNIQUES

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To develop skills to both design and critique visualizations.
- To introduce visual perception and core skills for visual analysis.
- To understand technological advancements of data visualization
- To understand various data visualization techniques
- To understand the methodologies used to visualize large data sets

UNIT I INTRODUCTION AND DATA FOUNDATION

9

Basics - Relationship between Visualization and Other Fields -The Visualization Process - Pseudo code Conventions - The Scatter plot. Data Foundation - Types of Data - Structure within and between Records - Data Preprocessing - Data Sets

UNIT II FOUNDATIONS FOR VISUALIZATION

9

Visualization stages - Semiology of Graphical Symbols - The Eight Visual Variables - Historical Perspective - Taxonomies - Experimental Semiotics based on Perception Gibson's Affordance theory - A Model of Perceptual Processing.

UNIT III VISUALIZATION TECHNIQUES

9

Spatial Data: One-Dimensional Data - Two-Dimensional Data - Three Dimensional Data - Dynamic Data - Combining Techniques. Geospatial Data: Visualizing Spatial Data - Visualization of Point Data - Visualization of Line Data - Visualization of Area Data - Other Issues in Geospatial Data Visualization Multivariate Data: Point-Based Techniques - LineBased Techniques - Region-Based Techniques - Combinations of Techniques - Trees Displaying Hierarchical Structures - Graphics and Networks- Displaying Arbitrary Graphs/Networks.

UNIT IV INTERACTION CONCEPTS AND TECHNIQUES

9

Text and Document Visualization: Introduction - Levels of Text Representations - The Vector Space Model - Single Document Visualizations -Document Collection Visualizations — Extended Text Visualizations Interaction Concepts: Interaction Operators - Interaction Operands and Spaces - A Unified Framework. Interaction Techniques: Screen Space - Object-Space —Data Space - Attribute Space- Data Structure Space - Visualization Structure — Animating Transformations - Interaction Control.

UNIT V RESEARCH DIRECTIONS IN VISUALIZATIONS

9

Steps in designing Visualizations – Problems in designing effective Visualizations- Issues of Data. Issues of Cognition, Perception, and Reasoning. Issues of System Design Evaluation , Hardware and Applications

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

COURSE OUTCOMES:

CO1: Visualize the objects in different dimensions.

CO2: Design and process the data for Visualization.

CO3:Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences.

CO4: Apply the virtualization techniques for research projects.

CO5: Identify appropriate data visualization techniques given particular requirements imposed by the data.

TOTAL: 45 PERIODS

REFERENCES

- 1. Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization Foundations, Techniques, Applications", 2010.
- 2. Colin Ware, "Information Visualization Perception for Design", 4th edition, Morgan Kaufmann Publishers, 2021.
- 3. Robert Spence "Information visualization Design for interaction", Pearson Education, 2nd Edition, 2007.
- 4. Alexandru C. Telea, "Data Visualization: Principles and Practice," A. K. Peters Ltd, 2008.

CO 1 C mapping									
СО	POs								
	PO1	PO2	PO3	PO4	PO5	P06			
1	3	1	2	2	1	2			
2	2	1	2	3	2	2			
3	1	-	2	2	1	1			
4	3	1	3	3	2	2			
5	2	1	3	2	1	1			
Avg	2.20	1.00	2.40	2.40	1.40	1.60			

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS306

COMPILER OPTIMIZATION TECHNIQUES

LTPC 3 0 0 3

COURSE OBJECTIVES:

- To understand the optimization techniques used in compiler design.
- To be aware of the various computer architectures that support parallelism.
- To become familiar with the theoretical background needed for code optimization.
- To understand the techniques used for identifying parallelism in a sequential program.
- To learn the various optimization algorithms.

UNIT I INTRODUCTION

9

Language Processors - The Structure of a Compiler – The Evolution of Programming Languages-The Science of Building a Compiler – Applications of Compiler Technology Programming Language Basics - The Lexical Analyzer Generator -Parser Generator - Overview of Basic Blocks and Flow Graphs - Optimization of Basic Blocks - Principle Sources of Optimization.

UNIT II INSTRUCTION-LEVEL PARALLELISM

9

Processor Architectures – Code-Scheduling Constraints – Basic-Block Scheduling –Global Code Scheduling – Advanced code motion techniques – Interaction with Dynamic Schedulers- Software Pipelining.

UNIT III OPTIMISING FOR PARALLELISM AND LOCALITY-THEORY

9

Basic Concepts – Matrix-Multiply: An Example - Iteration Spaces - Affine Array Indexes – Data Reuse- Array data dependence Analysis.

UNIT IV OPTIMISING FOR PARALLELISM AND LOCALITY – APPLICATION

9

Finding Synchronisation - Free Parallelism - Synchronisation Between Parallel Loops - Pipelining - Locality Optimizations - Other Uses of Affine Transforms.

UNIT V INTERPROCEDURAL ANALYSIS

9

Basic Concepts – Need for Interprocedural Analysis – A Logical Representation of Data Flow – A Simple Pointer-Analysis Algorithm – Context Insensitive Interprocedural Analysis – Context Sensitive Pointer-Analysis - Datalog Implementation by Binary Decision Diagrams.

COURSE OUTCOMES:

CO1: Design and implement techniques used for optimization by a compiler.

CO2: Modify the existing architecture that supports parallelism.

CO3: Modify the existing data structures of an open source optimising compiler.

CO4: Design and implement new data structures and algorithms for codeoptimization.

CO5: Critically analyse different data structures and algorithms used in the building of an optimising compiler.

TOTAL: 45 PERIODS

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

REFERENCES

- 1. Alfred V. Aho, Monica S.Lam, Ravi Sethi, Jeffrey D.Ullman, "Compilers:Principles,Techniques and Tools", Second Edition, Pearson Education,2008.
- 2. Randy Allen, Ken Kennedy, "Optimizing Compilers for Modern Architectures: A Dependence-based Approach", Morgan Kaufmann Publishers, 2002.
- 3. Steven S. Muchnick, "Advanced Compiler Design and Implementation", Morgan Kaufmann Publishers Elsevier Science, India, 2007
- 4. John Hopcroft, Rajeev Motwani, Jeffrey Ullman, "Introduction To Automata Theory Languages, and Computation", Third Edition, Pearson Education, 2007.
- 5. Torbengidius Mogensen, "Basics of Compiler Design", Springer, 2011.
- 6. Charles N, Ron K Cytron, Richard J LeBlanc Jr., "Crafting a Compiler", Pearson Education, 2010.

оо го шаррину									
СО		POs							
	PO1	PO2	PO3	PO4	PO5	PO6			
1	2	2	2	3	2	2			
2	-	-	3	3	-	3			
3	3	-	3	3	-	3			
4	3	3	3	3	-	-			
5	-	3	3	3	3	-			
Avg	2.6	2.6	2.8	3	2.5	2.6			

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS307 FORMAL MODELS OF SOFTWARE SYSTEMS

LT PC 3 0 0 3

COURSE OBJECTIVES:

- To understand the goals, complexity of software systems, the role of Specification activities and qualities to control complexity.
- To understand the fundamentals of abstraction and formal systems
- To learn fundamentals of logic reasoning- Propositional Logic, temporal logic and apply to models systems
- To understand formal specification models based on set theory, calculus and algebra and apply to a case study
- To learn Z, Object Z and B Specification languages with case studies.

UNIT I SPECIFICATION FUNDAMENTALS

9

Role of Specification- Software Complexity - Size, Structural, Environmental, Application, domain, Communication Complexity, How to Control Complexity. Software specification, Specification Activities-Integrating Formal Methods into the Software Lifecycle. Specification Qualities- Process Quality Attributes of Formal Specification Languages, Model of Process Quality, Product Quality and Utility, Conformance to Stated Goals Quality Dimensions and Quality Model.

UNIT II FORMAL METHODS

9

Abstraction- Fundamental Abstractions in Computing. Abstractions for Software Construction. Formalism Fundamentals - Formal Systems, Formalization Process in Software Engineering Components of a Formal System- Syntax, Semantics, and Inference Mechanism. Properties of Formal Systems - Consistency. Automata-Deterministic Finite Accepters, State Machine Modeling Nondeterministic Finite Accepters, Finite State Transducers Extended Finite State Machine. Case Study—Elevator Control. Classification of C Methods-Property-Oriented Specification Methods, Model-Based Specification Techniques.

UNIT III LOGIC 9

Propositional Logic - Reasoning Based on Adopting a Premise, Inference Based on Natural Deduction. Predicate Logic - Syntax and Semantics, Policy Language Specification, knowledge Representation Axiomatic Specification. Temporal Logic -. Temporal Logic for Specification and Verification, Temporal Abstraction Propositional Temporal Logic (PTL), First Order Temporal Logic (FOTL). Formal Verification, Verification of Simple FOTL, Model Checking, Program Graphs, Transition Systems.

UNIT IV SPECIFICATION MODELS

9

Mathematical Abstractions for Model-Based Specifications-Formal Specification Based on Set Theory, Relations and Functions. Property-Oriented Specifications- Algebraic Specification, Properties of Algebraic Specifications, Reasoning, Structured Specifications. Case Study—A Multiple Window Environment: requirements, Modeling Formal Specifications. Calculus of Communicating Systems: Specific Calculus for Concurrency. Operational Semantics of Agents, Simulation and Equivalence, Derivation Trees, Labeled Transition Systems.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

UNIT V FORMAL LANGUAGES

9

The Z Notation, abstractions in Z, Representational Abstraction, Types, Relations and Functions, Sequences, Bags. Free Types-Schemas, Operational Abstraction -Operations Schema Decorators, Generic Functions, Proving Properties from Z specifications, Consistency of Operations. Additional Features in Z. Case Study: An Automated Billing System. The Object-Z Specification Language-Basic Structure of an Object-Z, Specification. Parameterized Class, Object-Orientation, composition of Operations-Parallel Communication Operator, Nondeterministic Choice Operator, and Environment Enrichment. The B-Method -Abstract Machine Notation (AMN), Structure of a B Specification, arrays, statements. Structured Specifications, Case Study- A Ticketing System in a Parking.

COURSE OUTCOMES:

CO1: Understand the complexity of software systems, the need for formal specifications activities and qualities to control complexity.

CO2: Gain knowledge on fundamentals of abstraction and formal systems

CO3: Learn the fundamentals of logic reasoning- Propositional Logic, temporal logic and apply to models systems

CO4: Develop formal specification models based on set theory, calculus and algebra and apply to a typical case study

CO5: Have working knowledge on Z, Object Z and B Specification languages with case studies.

TOTAL: 45 PERIODS

REFERENCES

- 1. Mathematical Logic for computer science ,second edition, M.Ben-Ari ,Springer,2012.
- 2. Logic in Computer Science- modeling and reasoning about systems, 2 nd Edition, Cambridge University Press, 2004.
- 3. Specification of Software Systems, V.S. Alagar, K. Periyasamy, David Grises and Fred B Schneider, Springer –Verlag London, 2011
- 4. The ways Z: Practical programming with formal methods, Jonathan Jacky, Cambridge University Press,1996.
- 5. Using Z-Specification Refinement and Proof, Jim Woodcock and Jim Devies Prentice Hall, 1996
- Markus Roggenbach ,Antonio Cerone, Bernd-Holger Schlingloff, Gerardo Schneider , Siraj Ahmed Shaikh, Formal Methods for Software Engineering: Languages, Methods, Application Domains (Texts in Theoretical Computer Science. An EATCS Series) 1st ed. 2022 Edition

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai)

(An Autonomous Institution, Affiliated to Anna University, Chennai Department: Computer Science and Engineering, R2024, CBCS PROFESSIONAL ELECTIVES

Г	1		• • • • • • • • • • • • • • • • • • • •	<u> </u>				
СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	1	1	3	-	2	3		
2	2	1	-	2	1	3		
3	3	1	2	3	2	3		
4	-	2	2	-	1	3		
5	2	2	-	3	3	3		
Avg	2.00	1.40	2.33	2.67	1.80	3.00		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS308 ROBOTICS LTPC 3 0 0 3

COURSE OBJECTIVES:

- To Introduce the concepts of Robotic systems
- To understand the concepts of Instrumentation and control related to Robotics
- To understand the kinematics and dynamics of robotics
- To explore robotics in Industrial applications

UNIT I INTRODUCTION TO ROBOTICS

9

Robotics -History - Classification and Structure of Robotic Systems - Basic components -Degrees of freedom - Robot joints coordinates- Reference frames - workspace- Robot languages- Robotic sensors- proximity and range sensors, ultrasonic sensor, touch and slip sensor.

UNIT II ROBOT KINEMATICS AND DYNAMICS

9

Kinematic Modelling: Translation and Rotation Representation, Coordinate transformation, DH parameters, Forward and inverse kinematics, Jacobian, Dynamic Modelling: Forward and inverse dynamics, Equations of motion using Euler-Lagrange formulation, Newton Euler formulation.

UNIT III ROBOTICS CONTROL

9

Control of robot manipulator - state equations - constant solutions -linear feedback systems, single-axis PID control - PD gravity control -computed torque control, variable structure control and impedance control.

UNIT IV ROBOT INTELLIGENCE AND TASK PLANNING

9

Artificial Intelligence - techniques - search problem reduction - predicate logic means and end analysis -problem solving -robot learning - task planning - basic problems in task planning - Al in robotics and Knowledge Based Expert System in robotics

UNIT V INDUSTRIAL ROBOTICS

9

Robot cell design and control - cell layouts - multiple robots and machine interference - work cell design - work cell control - interlocks - error detection deduction and recovery - work cell controller - robot cycle time analysis. Safety in robotics, Applications of robot and future scope.

COURSE OUTCOMES:

At the end of the course the student will be able to

CO1: Describe the fundamentals of robotics

CO2: Understand the concept of kinematics and dynamics in robotics.

CO3: Discuss the robot control techniques

CO4: Explain the basis of intelligence in robotics and task planning

CO5: Discuss the industrial applications of robotics

TOTAL:45 PERIODS

REFERENCE:

- 1. John J. Craig, 'Introduction to Robotics (Mechanics and Control)', Addison-Wesley, 2nd Edition, 2004.
- 2. Richard D. Klafter, Thomas A. Chmielewski, Michael Negin, 'Robotics Engineering: An

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

- Integrated Approach', PHI Learning, New Delhi, 2009.
- 3. K.S.Fu, R.C.Gonzalez and C.S.G.Lee, 'Robotics Control, Sensing, Vision and Intelligence', Tata McGraw Hill, 2nd Reprint,2008.
- 4. Reza N.Jazar, 'Theory of Applied Robotics Kinematics, Dynamics and Control', Springer, 1st Indian Reprint, 2010.
- 5. Mikell. P. Groover, Michell Weis, Roger. N. Nagel, Nicolous G.Odrey, 'Industrial Robotics Technology, Programming and Applications', McGraw Hill, Int 2012.

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	1	3	3	-	2	-		
2	1	2	3	2	1	1		
3	1	2	1	3	3	2		
4	2	-	3	-	2	-		
5	1	-	-	3	3	3		
Avg	1.2	2.3	3	2.7	2.2	2		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS309 NATURAL LANGUAGE PROCESSING

LT P C 2 0 2 3

COURSE OBJECTIVES:

- To understand basics of linguistics, probability and statistics
- To study statistical approaches to NLP and understand sequence labeling
- To outline different parsing techniques associated with NLP
- To explore semantics of words and semantic role labeling of sentences
- To understand discourse analysis, question answering and chatbots

UNIT I INTRODUCTION

6

Natural Language Processing – Components - Basics of Linguistics and Probability and Statistics – Words-Tokenization-Morphology-Finite State Automata

UNIT II STATISTICAL NLP AND SEQUENCE LABELING

6

N-grams and Language models –Smoothing -Text classification- Naïve Bayes classifier – Evaluation - Vector Semantics – TF-IDF - Word2Vec- Evaluating Vector Models -Sequence Labeling – Part of Speech – Part of Speech Tagging -Named Entities –Named Entity Tagging

UNIT III CONTEXTUAL EMBEDDING

6

Constituency –Context Free Grammar –Lexicalized Grammars- CKY Parsing – Earley's algorithm-Evaluating Parsers -Partial Parsing – Dependency Relations- Dependency Parsing - Transition Based - Graph Based

UNIT IV COMPUTATIONAL SEMANTICS

6

Word Senses and WordNet – Word Sense Disambiguation – Semantic Role Labeling –Proposition Bank- FrameNet- Selectional Restrictions - Information Extraction - Template Filling

UNIT V DISCOURSE ANALYSIS AND SPEECH PROCESSING

6

Discourse Coherence – Discourse Structure Parsing – Centering and Entity Based Coherence – Question Answering –Factoid Question Answering – Classical QA Models – Chatbots and Dialogue systems – Frame-based Dialogue Systems – Dialogue–State Architecture

TOTAL: 30 PERIODS

SUGGESTED ACTIVITIES:

- 1. Probability and Statistics for NLP Problems
- 2. Carry out Morphological Tagging and Part-of-Speech Tagging for a sample text
- 3. Design a Finite State Automata for more Grammatical Categories
- 4. Problems associated with Vector Space Model
- 5. Hand Simulate the working of a HMM model
- 6. Examples for different types of work sense disambiguation
- 7. Give the design of a Chatbot

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

PRACTICAL EXERCISES:

- 1. Download nltk and packages. Use it to print the tokens in a document and the sentences from it.
- 2. Include custom stop words and remove them and all stop words from a given document using nltk or spaCY package
- 3. Implement a stemmer and a lemmatizer program.
- 4. Implement a simple Part-of-Speech Tagger
- 5. Write a program to calculate TFIDF of documents and find the cosine similarity between any two documents.
- 6. Use nltk to implement a dependency parser.
- 7. Implement a semantic language processor that uses WordNet for semantic tagging.
- 8. Project (in Pairs) Your project must use NLP concepts and apply them to some data.
 - a. Your project may be a comparison of several existing systems, or it may propose a new system in which case you still must compare it to at least one other approach.
 - b. You are free to use any third-party ideas or code that you wish as long as it is publicly available.
 - c. You must properly provide references to any work that is not your own in the write-up.
 - d. Project proposal You must turn in a brief project proposal. Your project proposal should describe the idea behind your project. You should also briefly describe software you will need to write, and papers (2-3) you plan to read.

List of Possible Projects

- 1. Sentiment Analysis of Product Reviews
- 2. Information extraction from News articles
- 3. Customer support bot
- 4. Language identifier
- 5. Media Monitor
- 6. Paraphrase Detector
- 7. Identification of Toxic Comment
- 8. Spam Mail Identification

COURSE OUTCOMES:

CO1: Understand basics of linguistics, probability and statistics associated with NLP

CO2: Implement a Part-of-Speech Tagger

CO3: Design and implement a sequence labeling problem for a given domain

CO4: Implement semantic processing tasks and simple document indexing and searching system—using the concepts of NLP

CO5: Implement a simple chatbot using dialogue system concepts

TOTAL: 60 PERIODS

PERIODS: 30

REFERENCES

- Daniel Jurafsky and James H.Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition" (Prentice Hall Series in Artificial Intelligence), 2020
- 2. Jacob Eisenstein. "Natural Language Processing", MIT Press, 2019

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

- 3. Samuel Burns "Natural Language Processing: A Quick Introduction to NLP with Python and NLTK, 2019
- 4. Christopher Manning, "Foundations of Statistical Natural Language Processing", MIT Press, 2009.
- 5. Nitin Indurkhya, Fred J. Damerau, "Handbook of Natural Language Processing", Second edition, Chapman & Hall/CRC: Machine Learning & Pattern Recognition, Hardcover, 2010
- 6. Deepti Chopra, Nisheeth Joshi, "Mastering Natural Language Processing with Python", Packt Publishing Limited, 2016
- 7. Mohamed Zakaria Kurdi "Natural Language Processing and Computational Linguistics: Speech, Morphology and Syntax (Cognitive Science)", ISTE Ltd., 2016
- 8. Atefeh Farzindar, Diana Inkpen, "Natural Language Processing for Social Media (Synthesis Lectures on Human Language Technologies)", Morgan and Claypool Life Sciences, 2015

СО	POs								
	PO1	PO2	PO3	PO4	PO5	PO6			
1	-	2	3	1	1	-			
2	2	2	2	3	-	3			
3	3	-	3	3	-	3			
4	1	-	2	3	-	3			
5	1	-	2	3	-	3			
Avg	1.75	2	2.4	2.6	1	3			

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS310 GPU COMPUTING

L T PC 3 0 0 3

COURSE OBJECTIVES:

- To understand the basics of GPU architectures
- To understand CPU GPU Program Partitioning
- To write programs for massively parallel processors
- To understand the issues in mapping algorithms for GPUs
- To introduce different GPU programming models

UNIT I GPU ARCHITECTURE

9

Evolution of GPU architectures - Understanding Parallelism with GPU –Typical GPU Architecture - CUDA Hardware Overview - Threads, Blocks, Grids, Warps, Scheduling - Memory Handling with CUDA: Shared Memory, Global Memory, Constant Memory and Texture Memory.

UNIT II CUDA PROGRAMMING

9

Using CUDA - Multi GPU - Multi GPU Solutions - Optimizing CUDA Applications: Problem Decomposition, Memory Considerations, Transfers, Thread Usage, Resource Contentions.

UNIT III PROGRAMMING ISSUES

9

Common Problems: CUDA Error Handling, Parallel Programming Issues, Synchronization, Algorithmic Issues, Finding and Avoiding Errors.

UNIT IV OPENCL BASICS

9

OpenCL Standard – Kernels – Host Device Interaction – Execution Environment – Memory Model – Basic OpenCL Examples.

UNIT V ALGORITHMS ON GPU

9

Parallel Patterns: Convolution, Prefix Sum, Sparse Matrix - Matrix Multiplication - Programming Heterogeneous Cluster.

SUGGESTED ACTIVITIES:

- 1. Debugging Lab
- 2. Performance Lab
- 3. Launching Nsight
- 4. Running Performance Analysis
- 5. Understanding Metrics
- 6. NVIDIA Visual Profiler
- 7. Matrix Transpose Optimization
- 8. Reduction Optimization

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

COURSE OUTCOMES:

CO1: Describe GPU Architecture

CO2: Write programs using CUDA, identify issues and debug them

CO3: Implement efficient algorithms in GPUs for common application kernels, such as matrix multiplication

CO4: Write simple programs using OpenCL

CO5: Identify efficient parallel programming patterns to solve problems

TOTAL: 45 PERIODS

REFERENCES

- 1. Shane Cook, CUDA Programming: "A Developer's Guide to Parallel Computing with GPUs (Applications of GPU Computing), First Edition, Morgan Kaufmann, 2012.
- 2. David R. Kaeli, Perhaad Mistry, Dana Schaa, Dong Ping Zhang, "Heterogeneous computing with OpenCL, 3rd Edition, Morgan Kauffman, 2015.
- 3. Nicholas Wilt, "CUDA Handbook: A Comprehensive Guide to GPU Programming, Addison Wesley, 2013.
- 4. Jason Sanders, Edward Kandrot, "CUDA by Example: An Introduction to General Purpose GPU Programming, Addison Wesley, 2010.
- 5. David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors A Hands-on Approach, Third Edition, Morgan Kaufmann, 2016.
- 6. http://www.nvidia.com/object/cuda home new.html
- 7. http://www.openCL.org

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	3	-	-	-	-	-		
2	-	-	2	-	-	-		
3	-	-	3	-	3	3		
4	-	2	-	3	2	-		
5	-	-	-	2	-	3		
Avg	3	2	2.5	2.5	2.5	3		

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS PROFESSIONAL ELECTIVES

SEMESTER III - ELECTIVE IV

S. NO.	COURSE	COURSE TITLE	CATE- GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
140.	CODE		GOKT	L	Т	Р	PERIODS	
1.	P24CS311	Devops and Microservices	PEC	3	0	2	5	4
2.	P24CS312	Mobile Application Development	PEC	3	0	2	5	4
3.	P24CS313	Deep Learning	PEC	3	0	2	5	4
4.	P24CS314	Blockchain Technologies	PEC	3	0	2	5	4
5.	P24CS315	Embedded Software Development	PEC	3	0	2	5	4
6.	P24CS316	Full Stack Web Application Development	PEC	3	0	2	5	4
7.	P24CS317	Bioinformatics	PEC	3	0	2	5	4
8.	P24CS318	Cyber Physical Systems	PEC	3	0	2	5	4
9.	P24CS319	Mixed Reality	PEC	3	0	2	5	4

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS311 DEVOPS AND MICROSERVICES

L T PC 3 0 2 4

COURSE OBJECTIVES:

- To learn the basic concepts and terminology of DevOps
- To gain knowledge on Devops platform
- To understand building and deployment of code
- To be familiar with DevOps automation tools
- To learn basics of MLOps

UNIT I INTRODUCTION

9+6

Software Engineering - traditional and Agile process models - DevOps -Definition - Practices - DevOps life cycle process - need for DevOps -Barriers

UNIT II DEVOPS PLATFORM AND SERVICES

9+6

Cloud as a platform - IaaS, PaaS, SaaS - Virtualization - Containers –Supporting Multiple Data Centers - Operation Services - Hardware provisioning- software Provisioning - IT services - SLA - capacity planning - security - Service Transition - Service Operation Concepts.

UNIT III BUILDING, TESTING AND DEPLOYMENT

9+6

Microservices architecture - coordination model - building and testing - Deployment pipeline - Development and Pre-commit Testing -Build and Integration Testing - continuous integration - monitoring - security - Resources to Be Protected - Identity Management

UNIT IV DEVOPS AUTOMATION TOOLS

9+6

Infrastructure Automation - Configuration Management - Deployment Automation - Performance Management - Log Management - Monitoring.

MLOPS 9+6

UNIT V

MLOps - Definition - Challenges -Developing Models - Deploying to production - Model Governance - Real world examples

SUGGESTED ACTIVITIES:

- 1. Creating a new Git repository, cloning existing repository, Checking changes into a Git repository, Pushing changes to a Git remote, Creating a Git branch
- 2. Installing Docker container on windows/Linux, issuing docker commands
- 3. Building Docker Images for Python Application
- 4. Setting up Docker and Maven in Jenkins and First Pipeline Run
- 5. Running Unit Tests and Integration Tests in Jenkins Pipelines

COURSE OUTCOMES:

CO1: Implement modern software Engineering process

CO2: work with DevOps platform **CO3:** build, test and deploy code

CO4: Explore DevOps tools

CO5: Correlate MLOps concepts with real time examples

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

TOTAL:75 PERIODS

REFERENCES

- 1. Len Bass, Ingo Weber and Liming Zhu, —"DevOps: A Software Architect's Perspective", Pearson Education, 2016
- 2. Joakim Verona "Practical DevOps" Packet Publishing, 2016
- 3. Viktor Farcic -"The DevOps 2.1 Toolkit: Docker Swarm" Packet Publishing, 2017
- 4. Mark Treveil, and the Dataiku Team-"Introducing MLOps" O'Reilly Media- 2020

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	3	2	1	2	3	-		
2	3	2	-		3	-		
3	3	2	2	3	2	3		
4	3	2	1	2	3	-		
5	3	2	2	1	2	3		
Avg	3	2	1.5	2	2.6	3		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS312

MOBILE APPLICATION DEVELOPMENT

LTPC 3 0 2 4

COURSE OBJECTIVES:

- To facilitate students to understand android SDK
- To help students to gain basic understanding of Android application development
- To understand how to work with various mobile application development frameworks
- To inculcate working knowledge of Android Studio development tool
- To learn the basic and important design concepts and issues of development of mobile applications

UNIT I MOBILE PLATFORM AND APPLICATIONS

a

Mobile Device Operating Systems — Special Constraints & Requirements — Commercial Mobile Operating Systems — Software Development Kit: iOS, Android, BlackBerry, Windows Phone — MCommerce — Structure — Pros & Cons — Mobile Payment System — Security Issues

UNIT II INTRODUCTION TO ANDROID

9

Introduction to Android: The Android Platform, Android SDK, Eclipse Installation, Android Installation, Building you First Android application, Understanding Anatomy of Android Application, Android Manifest file.

UNIT III ANDROID APPLICATION DESIGN ESSENTIALS

9

Anatomy of Android applications, Android terminologies, Application Context, Activities, Services, Intents, Receiving and Broadcasting Intents, Android Manifest File and its common settings, Using Intent Filter, Permissions.

UNIT IV ANDROID USER INTERFACE DESIGN & MULTIMEDIA

9

User Interface Screen elements, Designing User Interfaces with Layouts, Drawing and Working with Animation. Playing Audio and Video, Recording Audio and Video, Using the Camera to Take and Process Pictures

UNIT V ANDROID APIS

9

Using Android Data and Storage APIs, Managing data using Sqlite, Sharing Data between Applications with Content Providers, Using Android Networking APIs, Using Android Web APIs, Using Android Telephony APIs, Deploying Android Application to the World.

TOTAL:45 PERIODS

LIST OF EXPERIMENTS: (30)

- 1. Develop an application that uses GUI components, Font, Layout Managers and event listeners.
- 2. Develop an application that makes use of databases
- 3. Develop a native application that uses GPS location information
- 4. Develop an application that uses GUI components, Font, Layout Managers and event listeners.
- 5. Develop an application that makes use of databases
- 6. Develop a native application that uses GPS location information

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

- 7. Implement an application that creates an alert upon receiving a message
- 8. Develop an application that makes use of RSS Feed.
- 9. Create an application using Sensor Manager
- 10. Create an android application that converts the user input text to voice.
- 11. Develop a Mobile application for simple and day to day needs (Mini Project)

COURSE OUTCOMES:

CO1: Identify various concepts of mobile programming that make it unique from programming forother platforms

CO2: Create, test and debug Android application by setting up Android development

CO3: Demonstrate methods in storing, sharing and retrieving data in Android applications

CO4: Utilize rapid prototyping techniques to design and develop sophisticated mobile interfaces

CO5: Create interactive applications in android using databases with multiple activities includingaudio, video and notifications and deploy them in marketplace

TOTAL: 75 PERIODS

REFERENCES

1. Lauren Darcey and Shane Conder, "Android Wireless Application Development", Pearson

Education, 2nd ed. (2011)

- 2. Google Developer Training, "Android Developer Fundamentals Course Concept Reference", Google Developer Training Team, 2017.
- 3. Prasanth Kumar Pattnaik, Rajib Mall, "Fundamentals of Mobile Computing", PHI Learning Pvt. Ltd, New Delhi-2012
- 4. Reto Meier, "Professional Android 2 Application Development", Wiley India Pvt Ltd, 2010
- 5. Mark L Murphy, "Beginning Android", Wiley India Pvt Ltd, 2009
- 6. Dawn Griffiths and David Griffiths, "Head First Android Development", 1st Edition, O'Reilly SPD Publishers, 2015. ISBN-13: 978-9352131341
- 7. Erik Hellman, "Android Programming Pushing the Limits", 1st Edition, Wiley India Pvt Ltd, 2014. ISBN-13: 978-8126547197.
- Bill Phillips, Chris Stewart and Kristin Marsicano, "Android Programming: The Big NerdRanch Guide", 4th Edition, Big Nerd Ranch Guides, 2019. ISBN-13: 978-0134706054

СО	POs						
	PO1	PO2	PO3	PO4	PO5 PO6		
1	3	2	-	3	3	-	
2	3	1	1	3	-	2	
3	3	2	3	3	3	1	
4	3	1	1	2	-	3	
5	3	2	2	3	3	3	
Avg	3	1.6	1.75	2.8	3	2.25	

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS313 DEEP LEARNING

L T PC 3 0 2 4

COURSE OBJECTIVES:

- Develop and Train Deep Neural Networks.
- Develop a CNN, R-CNN, Fast R-CNN, Faster-R-CNN, Mask-RCNN for detection and recognition
- Build and train RNNs, work with NLP and Word Embeddings
- The internal structure of LSTM and GRU and the differences between them
- The Auto Encoders for Image Processing

UNIT I DEEP LEARNING CONCEPTS

6

Fundamentals about Deep Learning. Perception Learning Algorithms. Probabilistic modelling. Early Neural Networks. How Deep Learning different from Machine Learning. Scalars. Vectors. Matrixes, Higher Dimensional Tensors. Manipulating Tensors. Vector Data. Time Series Data. Image Data. Video Data.

UNIT II NEURAL NETWORKS

9

About Neural Network. Building Blocks of Neural Network. Optimizers. Activation Functions. Loss Functions. Data Pre-processing for neural networks, Feature Engineering. Overfitting and Underfitting. Hyperparameters.

UNIT III CONVOLUTIONAL NEURAL NETWORK

10

About CNN. Linear Time Invariant. Image Processing Filtering. Building a convolutional neural network. Input Layers, Convolution Layers. Pooling Layers. Dense Layers. Backpropagation Through the Convolutional Layer. Filters and Feature Maps. Backpropagation Through the Pooling Layers. Dropout Layers and Regularization. Batch Normalization. Various Activation Functions. Various Optimizers. LeNet, AlexNet, VGG16, ResNet. Transfer Learning with Image Data. Transfer Learning using Inception Oxford VGG Model, Google Inception Model, Microsoft ResNet Model. R- CNN, Fast R-CNN, Faster R-CNN, Mask-RCNN, YOLO

UNIT VI NATURAL LANGUAGE PROCESSING USING RNN

10

About NLP & its Toolkits. Language Modeling . Vector Space Model (VSM). Continuous Bag of Words (CBOW). Skip-Gram Model for Word Embedding. Part of Speech (PoS) Global Co- occurrence Statistics—based Word Vectors. Transfer Learning. Word2Vec. Global Vectors for Word Representation GloVe. Backpropagation Through Time. Bidirectional RNNs (BRNN) . Long Short Term Memory (LSTM). Bi-directional LSTM. Sequence-to-Sequence Models (Seq2Seq). Gated recurrent unit GRU.

UNIT V DEEP REINFORCEMENT & UNSUPERVISED LEARNING

10

About Deep Reinforcement Learning. Q-Learning. Deep Q-Network (DQN). Policy Gradient Methods. Actor-Critic Algorithm. About Autoencoding. Convolutional Auto Encoding. Variational Auto Encoding. Generative Adversarial Networks. Autoencoders for Feature Extraction. Auto Encoders for Classification. Denoising Autoencoders. Sparse Autoencoders

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

LIST OF EXPERIMENTS:

1. Feature Selection from Video and Image Data

- 2. Image and video recognition
- 3. Image Colorization
- 4. Aspect Oriented Topic Detection & Sentiment Analysis
- 5. Object Detection using Autoencoder

COURSE OUTCOMES:

CO1: Feature Extraction from Image and Video Data

CO2: Implement Image Segmentation and Instance Segmentation in Images

CO3: Implement image recognition and image classification using a pretrained network (Transfer Learning)

CO4: Traffic Information analysis using Twitter Data

CO5: Autoencoder for Classification & Feature Extraction

TOTAL: 45+30=75 PERIODS

30

REFERENCES

- 1. Deep Learning A Practitioner's Approach Josh Patterson and Adam Gibson O'Reilly Media, Inc.2017
- 2. Learn Keras for Deep Neural Networks, Jojo Moolayil, Apress, 2018
- 3. Deep Learning Projects Using TensorFlow 2, Vinita Silaparasetty, Apress, 2020
- 4. Deep Learning with Python, FRANÇOIS CHOLLET, MANNING SHELTER ISLAND, 2017
- 5. Pro Deep Learning with TensorFlow, Santanu Pattanayak, Apress, 2017

СО	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
1	2	2	-	3	3	3	
2	2	2	2	3	3	2	
3	2	2	2	3	2	3	
4	2	2	1	3	3	3	
5	2	2	-	3	2	2	
Avg	2	2	1.6	3	2.6	2.6	

(An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS **PROFESSIONAL ELECTIVES**

BLOCKCHAIN TECHNOLOGIES P24CS314

LTPC 3 0 2 4

COURSE OBJECTIVES:

- This course is intended to study the basics of Blockchain technology.
- During this course the learner will explore various aspects of Blockchain technology like application in various domains.
- By implementing, learners will have idea about private and public Blockchain, and smart contract.

UNIT I INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN

Introduction to Blockchain, Blockchain Technology Mechanisms & Networks, Blockchain Origins, Objective of Blockchain, Blockchain Challenges, Transactions and Blocks, P2P Systems, Keys as Identity, Digital Signatures, Hashing, and public key cryptosystems, private vs. public Blockchain.

UNIT II BITCOIN AND CRYPTOCURRENCY

9

Introduction to Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining Developments, Bitcoin Wallets, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM), Merkle Tree, Double-Spend Problem, Blockchain and Digital Currency, Transactional Blocks, Impact of Blockchain Technology on Cryptocurrency.

INTRODUCTION TO ETHEREUM UNIT III

9

Introduction to Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Accounts, , Transactions, Receiving Ethers, Smart Contracts.

INTRODUCTION TO HYPERLEDGER AND SOLIDITY PROGRAMMING **UNIT-IV** 10 Introduction to Hyperledger, Distributed Ledger Technology & its Challenges, Hyperledger & Distributed Ledger Technology, Hyperledger Fabric, Hyperledger Composer. Solidity - Language of Smart Contracts, Installing Solidity & Ethereum Wallet, Basics of Solidity, Layout of a Solidity Source File & Structure of Smart Contracts, General Value Types.

UNIT V BLOCKCHAIN APPLICATIONS

Internet of Things, Medical Record Management System, Domain Name Service and Future of Blockchain, Alt Coins.

TOTAL: 45 PERIODS

TOTAL: 30 PERIODS

LIST OF EXPERIMENTS:

- 1. Create a Simple Blockchain in any suitable programming language.
- 2. Use Geth to Implement Private Ethereum Block Chain.
- 3. Build Hyperledger Fabric Client Application.
- 4. Build Hyperledger Fabric with Smart Contract.
- 5. Create Case study of Block Chain being used in illegal activities in real world.
- 6. Using Python Libraries to develop Block Chain Application.

SUPPLEMENTARY RESOURCES:

- NPTEL online course: https://nptel.ac.in/courses/106/104/106104220/#
- Udemy: https://www.udemy.com/course/build-your-blockchain-az/

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

• EDUXLABS Online training : https://eduxlabs.com/courses/blockchain-technology-training/?tab=tab-curriculum

TOTAL: 75 PERIODS

COURSE OUTCOMES:

After the completion of this course, student will be able to

CO1: Understand and explore the working of Blockchain technology

CO2: Analyze the working of Smart Contracts

CO3: Understand and analyze the working of Hyperledger

CO4: Apply the learning of solidity to build de-centralized apps on Ethereum

CO5: Develop applications on Blockchain

REFERENCES:

- 1. Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained", Second Edition, Packt Publishing, 2018.
- 2. Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016
- 3. Antonopoulos, Mastering Bitcoin, O'Reilly Publishing, 2014. .
- 4. Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018.
- 5. D. Drescher, Blockchain Basics. Apress, 2017.

СО	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
1	2	1	3	2	2	3	
2	2	1	2	3	2	2	
3	2	1	3	1	2	1	
4	2	1	2	3	2	2	
5	-	-	-	-	-	-	
Avg	2.00	1.00	2.50	2.25	2.00	2.00	

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS315

EMBEDDED SOFTWARE DEVELOPMENT

LT PC 3 0 2 4

COURSE OBJECTIVES:

- To understand the architecture of embedded processor, microcontroller, and peripheral devices.
- To interface memory and peripherals with embedded systems.
- To study the embedded network environment.
- To understand challenges in Real time operating systems.
- To study, analyse and design applications on embedded systems.

UNIT I EMBEDDED PROCESSORS

9+6

Embedded Computers – Characteristics of Embedded Computing Applications – Challenges in Embedded Computing System Design – Embedded System Design Process- Formalism for System Design – Structural Description – Behavioural Description – ARM Processor – Intel ATOM Processor.

UNIT II EMBEDDED COMPUTING PLATFORM

9+6

CPU Bus Configuration – Memory Devices and Interfacing – Input/Output Devices and Interfacing – System Design – Development and Debugging – Emulator – Simulator – JTAG Design Example – Alarm Clock – Analysis and Optimization of Performance – Power and Program Size.

UNIT III EMBEDDED NETWORK ENIVIRONMENT

9+6

Distributed Embedded Architecture – Hardware And Software Architectures – Networks for Embedded Systems – I2C – CAN Bus – SHARC Link Supports – Ethernet – Myrinet – Internet – Network-based Design – Communication Analysis – System Performance Analysis – Hardware Platform Design – Allocation and Scheduling – Design Example – Elevator Controller.

UNIT IV REAL-TIME CHARACTERISTICS

9+6

Clock Driven Approach – Weighted Round Robin Approach – Priority Driven Approach – Dynamic versus Static Systems – Effective Release Times and Deadlines – Optimality of the Earliest Deadline First (EDF) Algorithm – Challenges in Validating Timing Constraints in Priority Driven Systems – Off-Line versus On-Line Scheduling.

UNIT V SYSTEM DESIGN TECHNIQUES

9+6

Design Methodologies – Requirement Analysis – Specification – System Analysis and Architecture Design – Quality Assurance – Design Examples – Telephone PBX – Ink jet printer – Personal Digital Assistants – Set-Top Boxes.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

SUGGESTED ACTIVITIES:

- 1. Study of ARM evaluation system
- 2. Interfacing ADC and DAC.
- 3. Interfacing LED and PWM.
- 4. Interfacing real time clock and serial port.
- 5. Interfacing keyboard and LCD.
- 6. Interfacing EPROM and interrupt.
- 7. Principles of Mailbox.
- 8. Interrupt performance characteristics of ARM and FPGA.
- 9. Flashing of LEDS.
- 10. Interfacing stepper motor and temperature sensor.

COURSE OUTCOMES:

CO1: Understand different architectures of embedded processor, microcontroller and peripheral devices. Interface memory and peripherals with embedded systems.

CO2: Interface memory and peripherals with embedded systems.

CO3: Work with embedded network environment.

CO4: Understand challenges in Real time operating systems.

CO5: Design and 85 nalyse applications on embedded systems.

TOTAL:75 PERIODS

REFERENCES

- 1. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things" Wiley Publication, First edition, 2013
- 2. Andrew N Sloss, D. Symes, C. Wright, Arm system developers guide, Morgan Kauffman/Elsevier, 2006.
- 3. ArshdeepBahga, Vijay Madisetti, "Internet of Things: A Hands-on-Approach" VPT First Edition, 2014
- 4. C. M. Krishna and K. G. Shin, "Real-Time Systems, McGraw-Hill, 1997
- 5. Frank Vahid and Tony Givargis, "Embedded System Design: A Unified Hardware/Software Introduction, John Wiley & Sons.1999
- 6. Jane.W.S. Liu, "Real-Time systems, Pearson Education Asia,2000
- 7. Michael J. Pont, "Embedded C, Pearson Education, 2007.
- 8. Muhammad Ali Mazidi , SarmadNaimi , SepehrNaimi, "The AVR Microcontroller and Embedded Systems: Using Assembly and C" Pearson Education, First edition, 2014
- 9. Steve Heath, "Embedded System Design, Elsevier, 2005
- 10. Wayne Wolf, "Computers as Components:Principles of Embedded Computer System Design, Elsevier, 2006.

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai)

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

СО	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
1	2	-	3	2	-	-	
2	-	-	-	3	3	2	
3	-	1	2	1	2	2	
4	2	2	-	-	3	-	
5	3	3	1	-	1	-	
Avg	1.3	2	2	2	2.25	2	

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS316

FULL STACK WEB APPLICATION DEVELOPMENT

LT PC 3 0 2 4

COURSE OBJECTIVES:

- Develop TypeScript Application
- Develop Single Page Application (SPA)
- Able to communicate with a server over the HTTP protocol
- Learning all the tools need to start building applications with Node.js
- Implement the Full Stack Development using MEAN Stack

UNIT I FUNDAMENTALS & TYPESCRIPT LANGUAGE

10

10

Server-Side Web Applications. Client-Side Web Applications. Single Page Application. About TypeScript. Creating TypeScript Projects. TypeScript Data Types. Variables. Expression and Operators. Functions. OOP in Typescript. Interfaces. Generics. Modules. Enums. Decorators. Enums. Iterators. Generators.

UNIT II ANGULAR

About Angular. Angular CLI. Creating an Angular Project. Components. Components Interaction. Dynamic Components. Angular Elements. Angular Forms. Template Driven Forms. Property, Style, Class and Event Binding. Two way Bindings. Reactive Forms. Form Group. Form Controls. About Angular Router. Router Configuration. Router State. Navigation Pages. Router Link. Query Parameters. URL matching. Matching Strategies. Services. Dependency Injection. HttpClient. Read Data from the Server. CRUD Operations. Http Header Operations. Intercepting requests and responses.

UNIT III NODE.js 10

About Node.js. Configuring Node.js environment. Node Package Manager NPM. Modules. Asynchronous Programming. Call Stack and Event Loop. Callback functions. Callback errors. Abstracting callbacks. Chaining callbacks. File System. Synchronous vs. asynchronous I/O. Path and directory operations. File Handle. File Synchronous API. File Asynchronous API. File Callback API. Timers. Scheduling Timers. Timers Promises API. Node.js Events. Event Emitter. Event Target and Event API. Buffers. Buffers and TypedArrays. Buffers and iteration. Using buffers for binary data. Flowing vs. non-flowing streams. JSON.

UNIT IV EXPRESS.Js

7 s Starting

Express.js. How Express.js Works. Configuring Express.js App Settings. Defining Routes. Starting the App. Express.js Application Structure. Configuration, Settings. Middleware. body-parser. cookie-parser. express-session. response-time. Template Engine. Jade. EJS. Parameters.Routing. router. route(path). Router Class. Request Object. Response Object. Error Handling.RESTful.

UNIT V MONGODB

8

Introduction to MongoDB. Documents. Collections. Subcollections. Database. Data Types. Dates. Arrays. Embedded Documents. CRUD Operations. Batch Insert. Insert Validation. Querying The Documents. Cursors. Indexing. Unique Indexes. Sparse Indexes. Special Index and Collection Types. Full-Text Indexes. Geospatial Indexing. Aggregation framework.

(An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS PROFESSIONAL ELECTIVES

LIST OF EXPERIMENTS 30

1. Accessing the Weather API from Angular

- 2. Accessing the Stock Market API from Angular
- 3. Call the Web Services of Express.js From Angular
- 4. Read the data in Node.js from MongoDB
- 5. CRUD operation in MongoDB using Angular

COURSE OUTCOMES:

CO1: Develop basic programming skills using Javascript

CO2: Implement a front-end web application using Angular.

CO3: Will be able to create modules to organise the server

CO4: Build RESTful APIs with Node, Express and MongoDB with confidence.

CO5: Will learn to Store complex, relational data in MongoDB using Mongoose

TOTAL: 45 + 30=75 PERIODS

REFERENCES

- 1. Adam Freeman, Essential TypeScript, Apress, 2019
- 2. Mark Clow, Angular Projects, Apress, 2018
- 3. Alex R. Young, Marc Harter, Node. js in Practice, Manning Publication, 2014
- 4. Pro Express.js, Azat Mardan, Apress, 2015
- 5. MongoDB in Action, Kyle Banker, Peter Bakkum, Shaun Verch, Douglas Garrett, Tim Hawkins, Manning Publication, Second edition, 2016

СО	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
1	-	-	2	3	3	3	
2	-	-	2	3	3	3	
3	2	-	1	-	3	3	
4	2	-	2	-	3	3	
5	3	3	-	-	3	3	
Avg	2.33	3	1.75	3	3	3	

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS317 BIO INFORMATICS LTPC 3 0 2 4

COURSE OBJECTIVES:

- Exposed to the need for Bioinformatics technologies
- Be familiar with the modeling techniques
- Learn microarray analysis
- Exposed to Pattern Matching and Visualization
- To know about Microarray Analysis

UNIT I INTRODUCTION

9

Need for Bioinformatics technologies – Overview of Bioinformatics technologies Structural bioinformatics – Data format and processing – Secondary resources and applications – Role of Structural bioinformatics – Biological Data Integration System.

UNIT II DATAWAREHOUSING AND DATAMINING IN BIOINFORMATICS

9

Bioinformatics data – Data warehousing architecture – data quality – Biomedical data analysis – DNA data analysis – Protein data analysis – Machine learning – Neural network architecture and applications in bioinformatics.

UNIT III MODELING FOR BIOINFORMATICS

9

Hidden Markov modeling for biological data analysis – Sequence identification –Sequence classification – multiple alignment generation – Comparative modeling –Protein modeling – genomic modeling – Probabilistic modeling – Bayesian networks – Boolean networks – Molecular modeling – Computer programs for molecular modeling.

UNIT IV PATTERN MATCHING AND VISUALIZATION

9

Gene regulation – motif recognition – motif detection – strategies for motif detection – Visualization – Fractal analysis – DNA walk models – one dimension – two dimension – higher dimension – Game representation of biological sequences – DNA, Protein, Amino acid sequences.

UNIT V MICROARRAY ANALYSIS

9

Microarray technology for genome expression study – image analysis for data extraction – preprocessing – segmentation – gridding – spot extraction – normalization, filtering – cluster analysis – gene network analysis – Compared Evaluation of Scientific Data Management Systems

- Cost Matrix - Evaluation model - Benchmark - Tradeoffs.

TOTAL: 45 PERIODS

LIST OF EXPERIMENTS:

- 1. Manipulating DNA strings
- 2. Use Protein Data Bank to visualize and Analyze the Proteins from protein database
- 3. Explore the Human Genome with the SciPy Stack

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

- 4. Hidden Markov Model for Biological Sequence
- 5. Molecular Modeling using MMTK package
- 6. Sequence Alignment using Biopython, Pairwise and multiple sequence alignment using ClustalW and BLAST
- 7. Simple generation and manipulation of genome graphs
- 8. DNA data handling using Biopython
- 9. Chaos Game Representation of a genetic sequence
- 10. Visualize the microarray data using Heatmap

TOTAL: 30 PERIODS

COURSE OUTCOMES:

CO1: Understand the different Data formats **CO2**: Develop machine learning algorithms.

CO3: Develop models for biological data.

CO4: Apply pattern matching techniques to bioinformatics data – protein data genomic data.

CO5: Apply micro array technology for genomic expression study.

TOTAL: 45 +30=75 PERIODS

REFERENCES

- 1. Yi-Ping Phoebe Chen (Ed), "BioInformatics Technologies", First Indian Reprint, Springer Verlag, 2007.
- 2. Bryan Bergeron, "Bio Informatics Computing", Second Edition, Pearson Education, 2015.
- 3. Arthur M Lesk, "Introduction to Bioinformatics", Second Edition, Oxford University Press, 2019

	1		• •				
СО	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
1	1	1	-	-	-	3	
2	1	1	2	2	1	2	
3	1	2	1	1	3	3	
4	1	2	2	2	2	2	
5	1	2	1	-	2	3	
Avg	1.00	1.60	1.50	1.67	2.00	2.60	

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS318 CYBER PHYSICAL SYSTEMS

LTPC 3 0 2 4

6

COURSE OBJECTIVES:

- To learn about the principles of cyber-physical systems
- To familiarize with the basic requirements of CPS.
- To know about CPS models
- To facilitate the students to understand the CPS foundations
- To make the students explore the applications and platforms.
- To provide introduction to practical aspects of cyber physical systems.
- To equip students with essential tools to implement CPS.

UNIT I INTRODUCTION TO CYBER-PHYSICAL SYSTEMS

Cyber-Physical Systems(CPS)-<u>E</u>mergence of CPS, Key Features of Cyber-Physical Systems,, CPS Drivers-Synchronous Model: Reactive Components, Properties of Components, Composing Components, Designs- Asynchronous Model of CPS: Processes, Design Primitives, Coordination Protocols

UNIT II CPS - REQUIREMENTS 12

Safety Specifications: Specifications, Verifying Invariants, Enumerative Search, Symbolic Search-Liveness Requirements: Temporal Logic, Model Checking, Proving Liveness

UNIT III CPS MODELS 9

Dynamical Systems: Continuous, Linear Systems-Time Models, Linear Systems, Designing Controllers, Analysis Techniques- Timed Model: Processes, Protocols, Automata- Hybrid Dynamical Models

UNIT IV CPS FOUNDATIONS 9

Symbolic Synthesis for CPS- Security in CPS-Synchronization of CPS-Real-Time Scheduling for CPS

UNIT V APPLICATIONS AND PLATFORMS 9

Medical CPS- CPS Built on Wireless Sensor Networks- CyberSim User Interface- iClebo Kobuki - iRobot Create- myRIO- Cybersim- Matlab toolboxes - Simulink.

LIST OF EXPERIMENTS (30)

- 1. Installation of Xilinx SDK, LABVIEW, MatLab and Cybersim
- 2. Installation of, myRIO iRobot Create Wiring, Kobuki Wiring
- 3. CPS DEsign with the iRobot Create
- 4. CPS Design with the Kobuki.
- 5. Write a program in MATLAB to implement open loop system stability.
- 6. Write a program in MATLAB to implement timed automation.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

COURSE OUTCOMES:

CO1: Explain the core principles behind CPS

CO2: Discuss the requirements of CPS.

CO3: Explain the various models of CPS.

CO4: Describe the foundations of CPS.

CO5: Use the various platforms to implement the CPS.

TOTAL: 45+30=75 PERIODS

REFERENCES

- 1. Raj Rajkumar, Dionisio De Niz , and Mark Klein, Cyber-Physical Systems, Addison-Wesley Professional, 2016
- 2. Rajeev Alur, Principles of Cyber-Physical Systems, MIT Press, 2015.
- 3. Lee, Edward Ashford, and Sanjit Arunkumar Seshia. Introduction to embedded systems: A cyber physical systems approach. 2nd Edition, 2017
- 4. André Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics., Springer, 2010. 426 pages,ISBN 978-3-642-14508-7.
- 5. Jean J. Labrosse, Embedded Systems Building Blocks: Complete and Ready-To-Use Modules in C, The publisher, Paul Temme, 2011.
- 6. Jensen, Jeff, Lee, Edward, A Seshia, Sanjit, An Introductory Lab in Embedded and Cyber-Physical Systems, http://leeseshia.org/lab, 2014.
- 7. documentation | KOBUKI (yujinrobot.com)

СО	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
1	3	3	3	-	1	-		
2	2	2	2	-	1			
3	-	-	3	1	-	1		
4	-	-	3	1	-	1		
5	2	-	2	3	3	3		
Avg	2.3	2.5	2.6	1.7	1.7	1.7		

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

P24CS319 MIXED REALITY L T P C 3 0 2 4

COURSE OBJECTIVES:

- To study about Fundamental Concept and Components of Virtual Reality
- To study about Interactive Techniques in Virtual Reality
- To study about Visual Computation in Virtual Reality
- To study about Augmented and Mixed Reality and Its Applications
- To know about I/O Interfaces and its functions.

UNIT I INTRODUCTION TO VIRTUAL REALITY

9

Introduction, Fundamental Concept and Components of Virtual Reality. Primary Features and Present Development on Virtual Reality. Computer graphics, Real time computer graphics, Flight Simulation, Virtual environment requirement, benefits of virtual reality, Historical development of VR, Scientific Landmark 3D Computer Graphics: Introduction, The Virtual world space, positioning the virtual observer, the perspective projection, human vision, stereo perspective projection, 3D clipping, Colour theory, Simple 3D modelling, Illumination models, Reflection models, Shading algorithms, Radiosity, Hidden Surface Removal, Realism Stereographic image.

Suggested Activities:

- Flipped classroom on uses of MR applications.
- Videos Experience the virtual reality effect.
- Assignment on comparison of VR with traditional multimedia applications.

Suggested Evaluation Methods:

- Tutorial Applications of MR.
- Quizzes on the displayed video and the special effects

UNIT II INTERACTIVE TECHNIQUES IN VIRTUAL REALITY

9

Introduction, from 2D to 3D, 3D spaces curves, 3D boundary representation Geometrical Transformations: Introduction, Frames of reference, Modeling transformations, Instances, Picking, Flying, Scaling the VE, Collision detection Generic VR system: Introduction, Virtual environment, Computer environment, VR technology, Model of interaction, VR Systems.

Suggested Activities:

- Flipped classroom on modeling three dimensional objects.
- External learning Collision detection algorithms.
- Practical Creating three dimensional models.

Suggested Evaluation Methods:

- Tutorial Three dimensional modeling techniques.
- Brainstorming session on collision detection algorithms.
- Demonstration of three dimensional scene creation.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

UNIT III VISUAL COMPUTATION IN VIRTUAL REALITY

9

Animating the Virtual Environment: Introduction, The dynamics of numbers, Linear and Nonlinear interpolation, the animation of objects, linear and non-linear translation, shape & object inbetweening, free from deformation, particle system. Physical Simulation: Introduction, Objects falling in a gravitational field, Rotating wheels, Elastic collisions, projectiles, simple pendulum, springs, Flight dynamics of an aircraft.

Suggested Activities:

- External learning Different types of programming toolkits and Learn different types of available VR applications.
- Practical Create VR scenes using any toolkit and develop applications.

Suggested Evaluation Methods:

- Tutorial VR tool comparison.
- Brainstorming session on tools and technologies used in VR.
- Demonstration of the created VR applications.

UNIT IV AUGMENTED AND MIXED REALITY

9

Taxonomy, technology and features of augmented reality, difference between AR and VR, Challenges with AR, AR systems and functionality, Augmented reality methods, visualization techniques for augmented reality, wireless displays in educational augmented reality applications, mobile projection interfaces, marker-less tracking for augmented reality, enhancing interactivity in AR environments, evaluating AR systems

Suggested Activities:

External learning - AR Systems

Suggested Evaluation Methods:

Brainstorming session different AR systems and environments.

UNIT V I/O INTERFACE IN VR & APPLICATION OF VR

9

Human factors: Introduction, the eye, the ear, the somatic senses. VR Hardware: Introduction, sensor hardware, Head-coupled displays, Acoustic hardware, Integrated VR systems. VR Software: Introduction, Modeling virtual world, Physical simulation, VR toolkits, Introduction to VRML, Input -- Tracker, Sensor, Digitalglobe, Movement Capture, Video-based Input, 3D Menus & 3DScanner etc. Output -- Visual /Auditory / Haptic Devices. VR Technology in Film & TV Production. VR Technology in Physical Exercises and Games. Demonstration of Digital Entertainment by VR.

Suggested Activities:

- External learning Different types of sensing and tracking devices for creating mixed reality environments.
- Practical Create MR scenes using any toolkit and develop applications.

Suggested Evaluation Methods:

- Tutorial Mobile Interface Design.
- Brainstorming session on wearable computing devices and games design.
- Demonstration and evaluation of the developed MR application.

TOTAL: 45 PERIODS

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

PRACTICALS:

- 1. Study of tools like Unity, Maya, 3DS MAX, AR toolkit, Vuforia and Blender.
- 2. Use the primitive objects and apply various projection methods by handling the camera.
- 3. Download objects from asset stores and apply various lighting and shading effects.
- 4. Model three dimensional objects using various modeling techniques and apply textures over them.
- 5. Create three dimensional realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.
- 6. Add audio and text special effects to the developed application.
- 7. Develop VR enabled applications using motion trackers and sensors incorporating full haptic interactivity.
- 8. Develop AR enabled applications with interactivity like E learning environment, Virtual walkthroughs and visualization of historic places.
- 9. Develop MR enabled simple applications like human anatomy visualization, DNA/RNA structure visualization and surgery simulation.
- 10. Develop simple MR enabled gaming applications.

COURSE OUTCOMES:

CO1: Understand the Fundamental Concept and Components of Virtual Reality

CO2: Able to know the Interactive Techniques in Virtual Reality

CO3: Can know about Visual Computation in Virtual Reality

CO4: Able to know the concepts of Augmented and Mixed Reality and Its Applications

CO5: Know about I/O Interfaces and its functions.

TOTAL:45+30=75 PERIODS

TOTAL: 30 PERIODS

REFERENCES

- 1. Burdea, G. C. and P. Coffet. Virtual Reality Technology, Second Edition. Wiley-IEEE Press, 2003/2006.
- 2. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, First Edition 2013.
- 3. Alan Craig, William Sherman and Jeffrey Will, Developing Virtual Reality Applications, Foundations of Effective Design, Morgan Kaufmann, 2009.
- 4. John Vince, "Virtual Reality Systems", Pearson Education Asia, 2007.
- 5. Adams, "Visualizations of Virtual Reality", Tata McGraw Hill, 2000.
- 6. Grigore C. Burdea, Philippe Coiffet, "Virtual Reality Technology", Wiley Inter Science, 2nd Edition, 2006.
- 7. William R. Sherman, Alan B. Craig, "Understanding Virtual Reality: Interface, Application and Design", Morgan Kaufmann, 2008

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai)

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
PROFESSIONAL ELECTIVES

СО	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
1	3	1	3	1	-	-	
2	3	-	3	-	1	-	
3	3	1	-	-	1	-	
4	-	-	-	-	1	-	
5	-	1	3	-	-	2	
Avg	3	1	3	1	1	2	

Meenakshi Sundararajan Engineering College (An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS **OPEN ELECTIVES**

SI.	Course	Course Title	Category		iods week	_	Total Contact	Credits
No.	Code	Code		L	Т	Р	Period	
1	P24OT501	Sustainable Management	OEC	3	0	0	3	3
2	P24OT502	Micro and Small Business Management	OEC	3	0	0	3	3
3	P24OT503	Intellectual Property Rights	OEC	3	0	0	3	3
4	P24OT504	Ethical Management	OEC	3	0	0	3	3
5	P24OT505	Big Data Analytics	OEC	3	0	0	3	3
6	P24OT506	Internet of Things and Cloud	OEC	3	0	0	3	3
7	P24OT507	Medical Robotics	OEC	3	0	0	3	3
8	P24OT508	Embedded Automation	OEC	3	0	0	3	3
9	P24OT509	Environmental Sustainability	OEC	3	0	0	3	3
10	P24OT510	Textile Reinforced Composites	OEC	3	0	0	3	3
11	P24OT511	Nanocomposite Materials	OEC	3	0	0	3	3
12	P24OT512	IPR, Biosafety and Entrepreneurship	OEC	3	0	0	3	3
13	P24OE513	IoT for Smart Systems	OEC	3	0	0	3	3
14	P24OE514	Machine Learning and Deep Learning	OEC	3	0	0	3	3
15	P24OE515	Renewable Energy Technology	OEC	3	0	0	3	3
16	P24OE516	Smart Grid	OEC	3	0	0	3	3
17	P24OM523	Vibration and Noise Control Strategies	OEC	3	0	0	3	3
18	P24OM524	Energy Conservation and Management in Domestic Sectors	OEC	3	0	0	3	3
19	P24OM525	Additive Manufacturing	OEC	3	0	0	3	3
20	P24OM526	Electric Vehicle Technology	OEC	3	0	0	3	3
21	P24OM527	New Product Development	OEC	3	0	0	3	3
22	P24OC528	Integrated Water Resources Management	OEC	3	0	0	3	3
23	P24ON529	Water, Sanitation and Health	OEC	3	0	0	3	3
24	P24ON530	Principles of Sustainable Development	OEC	3	0	0	3	3
25	P24ON531	Environmental Impact Assessment	OEC	3	0	0	3	3

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OC528 INTEGRATED WATER RESOURCES MANAGEMENT

LT PC 3 0 0 3

OBJECTIVE

• Students will be introduced to the concepts and principles of IWRM, which is inclusive of the economics, public-private partnership, water & health, water & food security and legal & regulatory settings.

UNIT I CONTEXT FOR IWRM

q

Water as a global issue: key challenges – Definition of IWRM within the broader context of development – Key elements of IWRM - Principles – Paradigm shift in water management - Complexity of the IWRM process – UN World Water Assessment - SDGs.

UNIT II WATER ECONOMICS

Q

Economic view of water issues: economic characteristics of water good and services – Non-market monetary valuation methods – Water economic instruments – Private sector involvement in water resources management: PPP objectives, PPP models, PPP processes, PPP experiences through case studies.

UNIT III LEGAL AND REGULATORY SETTINGS

9

Basic notion of law and governance: principles of international and national law in the area of water management - Understanding UN law on non-navigable uses of international water courses - International law for groundwater management - World Water Forums - Global Water Partnerships - Development of IWRM in line with legal and regulatory framework.

UNIT IV WATER AND HEALTH WITHIN THE IWRM CONTEXT

9

Links between water and health: options to include water management interventions for health – Health protection and promotion in the context of IWRM – Global burden of Diseases - Health impact assessment of water resources development projects – Case studies.

UNIT V AGRICULTURE IN THE CONCEPT OF IWRM

9

TOTAL: 45 PERIODS

Water for food production: 'blue' versus 'green' water debate – Water foot print - Virtual water trade for achieving global water and food security — Irrigation efficiencies, irrigation methods - current water pricing policy—scope to relook pricing.

OUTCOMES

On completion of the course, the student is expected to be able to

CO1 Describe the context and principles of IWRM; Compare the conventional and integrated ways of water management.

CO2 Select the best economic option among the alternatives; illustrate the pros and cons of PPP through case studies.

CO3 Apply law and governance in the context of IWRM.

CO4 Discuss the linkages between water-health; develop a HIA framework.

CO5 Analyse how the virtual water concept pave way to alternate policy options.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

REFERENCES:

- 1. Cech Thomas V., Principles of water resources: history, development, management and policy. John Wiley and Sons Inc., New York. 2003.
- 2. Mollinga .P. etal "Integrated Water Resources Management", Water in South Asia Volume I, Sage Publications, 2006.
- 3. Technical Advisory Committee, Integrated Water Resources management, Technical Advisory Committee Background Paper No: 4. Global water partnership, Stockholm, Sweden. 2002.
- 4. Technical Advisory Committee, Dublin principles for water as reflected in comparative assessment of institutional and legal arrangements for Integrated Water Resources Management, Technical Advisory Committee Background paper No: 3. Global water partnership, Stockholm, Sweden. 1999.
- 5. Technical Advisory Committee, Effective Water Governance". Technical Advisory Committee Background paper No: 7. Global water partnership, Stockholm, Sweden, 2003.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24ON529

WATER, SANITATION AND HEALTH

1 T P C 3 0 0 3

OBJECTIVES:

• Understand the accelerating health impacts due to the present managerial aspects and initiatives in water and sanitation and health sectors in the developing scenario

UNIT I FUNDAMENTALS WASH

9

Meanings and Definition: Safe Water- Health, Nexus: Water- Sanitation - Health and Hygiene - Equity issues-Water security - Food Security. Sanitation And Hygiene (WASH) and Integrated Water Resources Management (IWRM) - Need and Importance of WASH

UNIT II MANAGERIAL IMPLICATIONS AND IMPACT

9

Third World Scenario – Poor and Multidimensional Deprivation--Health Burden in Developing Scenario -Factors contribute to water, sanitation and hygiene related diseases-Social: Social Stratification and Literacy Demography: Population and Migration- Fertility - Mortality- Environment: Water Borne-Water Washed and Water Based Diseases - Economic: Wage - Water and Health Budgeting -Psychological: Non-compliance - Disease Relapse - Political: Political Will.

UNIT III CHALLENGES IN MANAGEMENT AND DEVELOPMENT

9

Common Challenges in WASH - Bureaucracy and Users- Water Utilities -Sectoral Allocation:-Infrastructure- Service Delivery: Health services: Macro and Micro- level: Community and Gender Issues- Equity Issues - Paradigm Shift: Democratization of Reforms and Initiatives.

UNIT IV GOVERNANCE

9

Public health -Community Health Assessment and Improvement Planning (CHA/CHIP)-Infrastructure and Investments on Water, (WASH) - Cost Benefit Analysis – Institutional Intervention-Public Private Partnership - Policy Directives - Social Insurance -Political Will vs Participatory Governance -

UNIT V INITIATIVES

Ç

Management vs Development -Accelerating Development- Development Indicators -Inclusive Development-Global and Local- Millennium Development Goal (MDG) and Targets - Five Year Plans - Implementation - Capacity Building - Case studies on WASH.

OUTCOMES:

TOTAL: 45 PERIODS

- **CO1** Capture to fundamental concepts and terms which are to be applied and understood all through the study.
- **CO2** Comprehend the various factors affecting water sanitation and health through the lens of third world scenario.
- **CO3** Critically analyse and articulate the underlying common challenges in water, sanitation and health.
- **CO4** Acquire knowledge on the attributes of governance and its say on water sanitation and health.
- **CO5** Gain an overarching insight in to the aspects of sustainable resource management in the absence of a clear level playing field in the developmental aspects.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

REFERENCES

- 1. Bonitha R., Beaglehole R., Kjellstorm, 2006, "Basic Epidemiology", 2nd Edition, World Health Organization.
- 2. Van Note Chism, N. and Bickford, D. J. (2002), Improving the environment for learning: An expanded agenda. New Directions for Teaching and Learning, 2002: 91–98.doi: 10.1002/tl.83Improving the Environment for learning: An Expanded Agenda
- 3. National Research Council. *Global Issues in Water, Sanitation, and Health: Workshop Summary.* Washington, DC: The National Academies Press, 2009.
- 4. Sen, Amartya 1997. On Economic Inequality. Enlarged edition, with annex by JamesFoster and Amartya Sen, Oxford: Claredon Press, 1997.
- 5. Intersectoral Water Allocation Planning and Management, 2000, World Bank Publishers www. Amazon.com
- 6. Third World Network.org (www.twn.org).

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24ON530 PRINCIPLES OF SUSTAINABLE DEVELOPMENT

L T PC 3 0 0 3

OBJECTIVES:

• To impart knowledge on environmental, social and economic dimensions of sustainability and the principles evolved through landmark events so as to develop an action mindset forsustainable development.

UNIT I SUSTAINABILITY AND DEVELOPMENT CHALLEGES

9

Definition of sustainability – environmental, economical and social dimensions of sustainability - sustainable development models – strong and weak sustainability – defining development-millennium development goals – mindsets for sustainability: earthly, analytical, precautionary, action and collaborative– syndromes of global change: utilisation syndromes, development syndromes, and sink syndromes – core problems and cross cutting Issues of the 21 century - global, regional and local environmental issues – social insecurity - resource degradation –climate change – desertification.

UNIT II PRINCIPLES AND FRAME WORK

9

History and emergence of the concept of sustainable development - our common future - Stockholm to Rio plus 20– Rio Principles of sustainable development – Agenda 21 natural step- peoples earth charter – business charter for sustainable development –UN Global Compact - Role of civil society, business and government – United Nations' 2030 Agenda for sustainable development – 17 sustainable development goals and targets, indicators and intervention areas

UNIT III SUSTAINABLE DEVELOPMENT AND WELLBEING

9

The Unjust World and inequities - Quality of Life - Poverty, Population and Pollution - Combating Poverty - - Demographic dynamics of sustainability - Strategies to end Rural and Urban Poverty and Hunger - Sustainable Livelihood Framework- Health, Education and Empowerment of Women, Children, Youth, Indigenous People, Non-Governmental Organizations, Local Authorities and Industry for Prevention, Precaution, Preservation and Public participation.

UNIT IV SUSTAINABLE SOCIO-ECONOMIC SYSTEMS

10

Sustainable Development Goals and Linkage to Sustainable Consumption and Production – Investing in Natural Capital- Agriculture, Forests, Fisheries - Food security and nutrition and sustainable agriculture- Water and sanitation - Biodiversity conservation and Ecosystem integrity – Ecotourism - Sustainable Cities – Sustainable Habitats- Green Buildings - Sustainable Transportation — Sustainable Mining - Sustainable Energy– Climate Change –Mitigation and Adaptation - Safeguarding Marine Resources - Financial Resources and Mechanisms

UNIT V ASSESSING PROGRESS AND WAY FORWARD

8

Nature of sustainable development strategies and current practice- Sustainability in global, regional and national context –Approaches to measuring and analysing sustainability– limitations of GDP-Ecological Footprint- Human Development Index- Human Development Report – National initiatives for Sustainable Development - Hurdles to Sustainability - Science and Technology for sustainable development –Performance indicators of sustainability and Assessment mechanism – Inclusive

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

Green Growth and Green Economy – National Sustainable Development Strategy Planning and National Status of Sustainable Development Goals

TOTAL: 45 PERIODS

OUTCOMES:

- On completion of the course, the student is expected to be able to
 - CO1 Explain and evaluate current challenges to sustainability, including modern world social, environmental, and economic structures and crises.
 - CO2 Identify and critically analyze the social environmental, and economic dimensions of sustainability in terms of UN Sustainable development goals
 - CO3 Develop a fair understanding of the social, economic and ecological linkage of Human well being, production and consumption
 - CO4 Evaluate sustainability issues and solutions using a holistic approach that focuses on connections between complex human and natural systems.
 - CO5 Integrate knowledge from multiple sources and perspectives to understand environmental limits governing human societies and economies and social justice dimensions of sustainability.

REFERENCES:

- 1. Tom Theis and Jonathan Tomkin, Sustainability: A Comprehensive Foundation, Rice University, Houston, Texas, 2012
- 2. A guide to SDG interactions:from science to implementation, International Council for Science, Paris,2017
- 3. Karel Mulder, Sustainable Development for Engineers A Handbook and Resource Guide, Rouledge Taylor and Francis, 2017.
- 4. The New Global Frontier Urbanization, Poverty and Environmentin the 21st Century George Martine, Gordon McGranahan, Mark Montgomery and Rogelio Fernández-Castilla, IIED and UNFPA, Earthscan, UK, 2008
- 5. Nolberto Munier, Introduction to Sustainability: Road to a Better Future, Springer, 2006
- 6. Barry Dalal Clayton and Stephen Bass, Sustainable Development Strategies- a resource book", Earthscan Publications Ltd, London, 2002.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24ON531 ENVIRONMENTAL IMPACT ASSESSMENT

LTPC 3 0 0 3

OBJECTIVES:

• To make the students to understand environmental clearance, its legal requirements and to provide knowledge on overall methodology of EIA, prediction tools and models, environmental management plan and case studies.

UNIT I INTRODUCTION

9

Historical development of Environmental Impact Assessment (EIA). Environmental Clearance- EIA in project cycle. legal and regulatory aspects in India – types and limitations of EIA –EIA process-screening – scoping - terms of reference in EIA- setting – analysis – mitigation. Cross sectoral issues –public hearing in EIA- EIA consultant accreditation.

UNIT II IMPACT INDENTIFICATION AND PREDICTION

10

Matrices – networks – checklists – cost benefit analysis – analysis of alternatives – expert systems in EIA. prediction tools for EIA – mathematical modeling for impact prediction – assessment of impacts – air – water – soil – noise – biological — cumulative impact assessment

UNIT III SOCIO-ECONOMIC IMPACT ASSESSMENT

8

Socio-economic impact assessment - relationship between social impacts and change in community and institutional arrangements. factors and methodologies- individual and family level impacts. communities in transition-rehabilitation

UNIT IV EIA DOCUMENTATION AND ENVIRONMENTAL MANAGEMENT PLAN 9

Environmental management plan - preparation, implementation and review - mitigation and rehabilitation plans - policy and guidelines for planning and monitoring programmes - post project audit - documentation of EIA findings - ethical and quality aspects of environmental impact assessment

UNIT V CASE STUDIES

9

Mining, power plants, cement plants, highways, petroleum refining industry, storage & handling of hazardous chemicals, common hazardous waste facilities, CETPs, CMSWMF, building and construction projects

TOTAL: 45 PERIODS

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Understand need for environmental clearance, its legal procedure, need of EIA,
	its types, stakeholders and their roles
CO2	Understand various impact identification methodologies, prediction techniques
	and model of impacts on various environments
CO3	Understand relationship between social impacts and change in community due
	to development activities and rehabilitation methods
CO4	Document the EIA findings and prepare environmental management and
	monitoring plan
CO5	Identify, predict and assess impacts of similar projects based on case studies

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

REFERENCES:

- 1. EIA Notification 2006 including recent amendments, by Ministry of Environment, Forest and Climate Change, Government of India
- 2. Sectoral Guidelines under EIA Notification by Ministry of Environment, Forest and Climate Change, Government of India
- 3. Canter, L.W., Environmental Impact Assessment, McGraw Hill, New York. 1996
- 4. Lawrence, D.P., Environmental Impact Assessment Practical solutions to recurrent problems, Wiley-Interscience, New Jersey. 2003
- 5. Lee N. and George C. 2000. Environmental Assessment in Developing and Transitional Countries. Chichester: Willey
- 6. World Bank Source book on EIA ,1999
- 7. Sam Mannan, Lees' Loss Prevention in the Process Industries, Hazard Identification Assessment and Control, 4th Edition, Butterworth Heineman, 2012.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OM523 VIBRATION AND NOISE CONTROL STRATEGIES

L T PC 3 0 0 3

OBJECTIVES

- To appreciate the basic concepts of vibration in damped and undamped systems
- To appreciate the basic concepts of noise, its effect on hearing and related terminology
- To use the instruments for measuring and analyzing the vibration levels in a body
- To use the instruments for measuring and analyzing the noise levels in a system
- To learn the standards of vibration and noise levels and their control techniques

UNIT- I BASICS OF VIBRATION

9

Introduction – Sources and causes of Vibration-Mathematical Models - Displacement, velocity and Acceleration - Classification of vibration: free and forced vibration, undamped and damped vibration, linear and non-linear vibration - Single Degree Freedom Systems - Vibration isolation - Determination of natural frequencies

UNIT- II BASICS OF NOISE

9

Introduction - Anatomy of human ear - Mechanism of hearing - Amplitude, frequency, wavelength and sound pressure level - Relationship between sound power, sound intensity and sound pressure level - Addition, subtraction and averaging decibel levels - sound spectra -Types of soundfields - Octave band analysis - Loudness.

UNIT- III INSTRUMENTATION FOR VIBRATION MEASUREMENT

9

Experimental Methods in Vibration Analysis.- Vibration Measuring Instruments - Selection of Sensors - Accelerometer Mountings - Vibration Exciters - Mechanical, Hydraulic, Electromagnetic and Electrodynamics - Frequency Measuring Instruments -. System Identification from Frequency Response -Testing for resonance and mode shapes

UNIT- IV INSTRUMENTATION FOR NOISE MEASUREMENT AND ANALYSIS 9

Microphones - Weighting networks - Sound Level meters, its classes and calibration - Noise measurements using sound level meters - Data Loggers - Sound exposure meters - Recording of noise - Spectrum analyser - Intensity meters - Energy density sensors - Sound source localization.

UNIT- V METHODS OF VIBRATION CONTROL, SOURCES OF NOISE AND ITS CONTROL

9

Specification of Vibration Limits – Vibration severity standards - Vibration as condition Monitoring Tool – Case Studies - Vibration Isolation methods - Dynamic Vibration Absorber – Need for Balancing - Static and Dynamic Balancing machines – Field balancing - Major sources of noise - Noise survey techniques – Measurement technique for vehicular noise - Road vehicles Noise standard – Noise due to construction equipment and domestic appliances – Industrial noisesources and its strategies – Noise control at the source – Noise control along the path – Acoustic Barriers – Noise control at the receiver -- Sound transmission through barriers – Noise reduction Vs Transmission loss - Enclosures

TOTAL: 45 PERIODS

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

OUTCOMES:

On Completion of the course the student will be able to

- 1. apply the basic concepts of vibration in damped and undamped systems
- 2. apply the basic concepts of noise and to understand its effects on systems
- 3. select the instruments required for vibration measurement and its analysis
- 4. select the instruments required for noise measurement and its analysis.
- 5. recognize the noise sources and to control the vibration levels in a body and to control noise under different strategies.

REFERENCES:

- 1. Singiresu S. Rao, "Mechanical Vibrations", Pearson Education Incorporated, 2017.
- 2. Graham Kelly. Sand Shashidhar K. Kudari, "Mechanical Vibrations", Tata McGraw –Hill Publishing Com. Ltd., 2007.
- 3. Ramamurti. V, "Mechanical Vibration Practice with Basic Theory", Narosa Publishing House, 2000.
- 4. William T. Thomson, "Theory of Vibration with Applications", Taylor & Francis, 2003.
- 5. G.K. Grover, "Mechanical Vibrations", Nem Chand and Bros., Roorkee, 2014.
- 6. A.G. Ambekar, "Mechanical Vibrations and Noise Engineering", PHI Learning Pvt. Ltd., 2014.
- 7. David A. Bies and Colin H. Hansen, "Engineering Noise Control Theory and Practice", Spon Press, London and New York, 2009.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P240M524 ENERGY CONSERVATION AND MANAGEMENT IN L T P C DOMESTIC SECTORS 3 0 0 3

COURSE OBJECTIVES:

- To learn the present energy scenario and the need for energy conservation.
- To understand the different measures for energy conservation in utilities.
- Acquaint students with principle theories, materials, and construction techniques to create energy efficient buildings.
- To identify the energy demand and bridge the gap with suitable technology for sustainable habitat
- To get familiar with the energy technology, current status of research and find the ways to optimize a system as per the user requirement

UNIT I ENERGY SCENARIO

9

Primary energy resources - Sectorial energy consumption (domestic, industrial and other sectors), Energy pricing, Energy conservation and its importance, Energy Conservation Act-2001 and its features – Energy star rating.

UNIT II HEATING, VENTILLATION & AIR CONDITIONING

9

Basics of Refrigeration and Air Conditioning – COP / EER / SEC Evaluation – SPV system design & optimization for Solar Refrigeration.

UNIT III LIGHTING, COMPUTER, TV

9

Specification of Luminaries – Types – Efficacy – Selection & Application – Time Sensors – Occupancy Sensors – Energy conservation measures in computer – Television – Electronic devices.

UNIT IV ENERGY EFFICIENT BUILDINGS

9

Conventional versus Energy efficient buildings – Landscape design – Envelope heat loss and heat gain – Passive cooling and heating – Renewable sources integration.

UNIT V ENERGY STORAGE TECHNOLOGIES

9

Necessity & types of energy storage – Thermal energy storage – Battery energy storage, charging and discharging– Hydrogen energy storage & Super capacitors – energy density and safety issues – Applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- 1. Understand technical aspects of energy conservation scenario.
- 2. Energy audit in any type for domestic buildings and suggest the conservation measures.
- 3. Perform building load estimates and design the energy efficient landscape system.
- 4. Gain knowledge to utilize an appliance/device sustainably.
- 5. Understand the status and current technological advancement in energy storage field.

REFERENCES:

1. Yogi Goswami, Frank Kreith, Energy Efficiency and Renewable energy Handbook, CRCPress, 2016

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

- 2. ASHRAE Handbook 2020 HVAC Systems & Equipment
- 3. Paolo Bertoldi, Andrea Ricci, Anibal de Almeida, Energy Efficiency in Household Appliances and Lighting, Conference proceedings, Springer, 2001
- 4. David A. Bainbridge, Ken Haggard, Kenneth L. Haggard, Passive Solar Architecture: Heating, Cooling, Ventilation, Daylighting, and More Using Natural Flows, Chelsea Green Publishing, 2011.
- 5. Guide book for National Certification Examination for Energy Managers and Energy Auditors (Could be downloaded from www.energymanagertraining.com)
- 6. Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Applications, John Wiley & Sons 2002.
- 7. Robert Huggins, Energy Storage: Fundamentals, Materials and Applications, 2nd edition, Springer, 2015
- 8. Ru-shiliu, Leizhang, Xueliang sun, Electrochemical technologies for energy storage and conversion, Wiley publications, 2012.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OM525 ADDITIVE MANUFACTURING

L T P C 3 0 0 3

UNIT I INTRODUCTION

9

Need - Development - Rapid Prototyping Rapid Tooling - Rapid Manufacturing - Additive Manufacturing. AM Process Chain- Classification - Benefits.

UNIT II DESIGN FOR ADDITIVE MANUFACTURING

9

CAD Model Preparation - Part Orientation and Support Structure Generation - Model Slicing - Tool Path Generation Customized Design and Fabrication - Case Studies.

UNIT III VAT POLYMERIZATION

9

Stereolithography Apparatus (SLA)- Materials -Process -Advantages Limitations- Applications. Digital Light Processing (DLP) - Materials - Process - Advantages - Applications. Multi Jet Modelling (MJM) - Principles - Process - Materials - Advantages and Limitations.

UNIT IV MATERIAL EXTRUSION AND SHEET LAMINATION

9

Fused Deposition Modeling (FDM)- Process-Materials - Applications and Limitations. Sheet Lamination Process: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bonding - Thermal Bonding- Materials- Application and Limitation - Bio-Additive Manufacturing Computer Aided Tissue Engineering (CATE) - Case studies

POWDER BASED PROCESS

Selective Laser Sintering (SLS): Process –Mechanism– Typical Materials and Application- Multi Jet Fusion - Basic Principle— Materials- Application and Limitation - Three Dimensional Printing - Materials -Process - Benefits and Limitations. Selective Laser Melting (SLM) and Electron Beam Melting (EBM): Materials – Process - Advantages and Applications. Beam Deposition Process: Laser Engineered Net Shaping (LENS)- Process -Material Delivery - Process Parameters - Materials - Benefits -Applications.

UNIT V CASE STUDIES AND OPPORTUNITIES ADDITIVE MANUFACTURING PROCESSES

Education and training - Automobile- pattern and mould - tooling - Building Printing-Bio Printing - medical implants -development of surgical tools Food Printing -Printing Electronics. Business Opportunities and Future Directions - Intellectual Property.

REFERENCES:

TOTAL: 45 PERIODS

- 1. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015, ISBN: 978-1- 56990-582-1.
- 2. Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United States, 2015, ISBN13: 978-1493921126.
- 3. Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press., United States, 2015, ISBN-13: 978-1482223590
- 4. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011, ISBN :9783446425521.
- 5. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third edition, World Scientific Publishers, 2010.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OM526

ELECTRIC VEHICLE TECHNOLOGY

L T P C 3 0 0 3

UNIT I NEED FOR ELECTRIC VEHICLES

q

History and need for electric and hybrid vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies, comparison of diesel, petrol, electric and hybrid vehicles, limitations, technical challenges

UNIT II ELECTRIC VEHICLE ARCHITECHTURE

9

Electric vehicle types, layout and power delivery, performance – traction motor characteristics, tractive effort, transmission requirements, vehicle performance, energy consumption, Concepts of hybrid electric drive train, architecture of series and parallel hybrid electric drive train, merits and demerits, mild and full hybrids, plug-in hybrid electric vehicles and range extended hybrid electric vehicles, Fuel cell vehicles.

UNIT III ENERGY STORAGE

9

Batteries – types – lead acid batteries, nickel based batteries, and lithium based batteries, electrochemical reactions, thermodynamic voltage, specific energy, specific power, energy efficiency, Battery modeling and equivalent circuit, battery charging and types, battery cooling, Ultracapacitors, Flywheel technology, Hydrogen fuel cell, Thermal Management of the PEM fuel cell

UNIT IV ELECTRIC DRIVES AND CONTROL

9

Types of electric motors – working principle of AC and DC motors, advantages and limitations, DC motor drives and control, Induction motor drives and control, PMSM and brushless DC motor - drives and control , AC and Switch reluctance motor drives and control – Drive system efficiency – Inverters – DC and AC motor speed controllers

UNIT V DESIGN OF ELECTRIC VEHICLES

9

Materials and types of production, Chassis skate board design, motor sizing, power pack sizing, component matching, Ideal gear box – Gear ratio, torque–speed characteristics, Dynamic equation of vehicle motion, Maximum tractive effort – Power train tractive effort Acceleration performance, rated vehicle velocity – maximum gradability, Brake performance, Electronic control system, safety and challenges in electric vehicles. Case study of Nissan leaf, Toyota Prius, tesla model 3, and Renault Zoe cars.

TOTAL: 45 PERIODS

REFERENCES:

- 1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, 2nd edition CRC Press, 2011.
- 2. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
- 3. James Larminie, John Lowry, Electric Vehicle Technology Explained Wiley, 2003.
- 4. Ehsani, M, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2005

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OM527 NEW PRODUCT DEVELOPMENT L T P C 3 0 0 3

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- Applying the principles of generic development process; and understanding the organization structure for new product design and development.
- Identfying opportunity and planning for new product design and development.
- Conducting customer need analysis; and setting product specification for new product design and development.
- Generating, selecting, and testing the concepts for new product design and development.
- Appling the principles of Industrial design and prototype for new product design and development.

UNIT I INTRODUCTION TO PRODUCTDESIGN & DEVELOPMENT 9

Introduction – Characteristics of Successful Product Development – People involved in Product Design and Development – Duration and Cost of Product Development – The Challenges of Product Development – The Product Development Process – Concept Development: The Front-End Process – Adapting the Generic Product Development Process – Product Development Process Flows – Product Development Organizations.

UNIT II OPPORTUNITY DENTIFICATION & PRODUCT PLANNING 9

Opportunity Identification: Definition – Types of Opportunities – Tournament Structure of Opportunity Identification – Effective Opportunity Tournaments – Opportunity Identification Process – Product Planning: Four types of Product Development Projects – The Process of Product Planning.

UNIT III IDENTIFYING CUSTOMER NEEDS & PRODUCT SPECIFICATIONS 9

Identifying Customer Needs: The Importance of Latent Needs – The Process of Identifying Customer Needs. Product Specifications: Definition – Time of Specifications Establishment – Establishing Target Specifications – Setting the Final Specifications

UNIT IV CONCEPT GENERATION, SELECTION & TESTING

Concept Generation: Activity of Concept Generation – Structured Approach – Five step method of Concept Generation. Concept Selection: Methodology – Concept Screening and Concepts Scoring. Concept testing: Seven Step activities of concept testing.

9

TOTAL: 45 PERIODS

UNITY INDUSTRIAL DESIGN & PROTOTYPING 9

Industrial Design: Need and Impact–Industrial Design Process. Prototyping – Principles of Prototyping – Prototyping Technologies – Planning for Prototypes.

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- Apply the principles of generic development process; and understand the organization structure for new product design and development.
- Identify opportunity and plan for new product design and development.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

- Conduct customer need analysis; and set product specification for new product design and development.
- Generate, select, and test the concepts for new product design and development.
- Apply the principles of Industrial design and prototype for design and develop new products.

TEXT BOOK:

1. Ulrich K.T., Eppinger S. D. and Anita Goyal, "Product Design and Development "McGraw-Hill Education; 7 edition, 2020.

REFERENCES:

- 1. Belz A., 36-Hour Course: "Product Development" McGraw-Hill, 2010.
- 2. Rosenthal S., "Effective Product Design and Development", Business One Orwin, Homewood, 1992, ISBN 1-55623-603-4.
- 3. Pugh.S, "Total Design Integrated Methods for Successful Product Engineering", Addison Wesley Publishing, 1991, ISBN 0-202-41639-5.
- 4. Chitale, A. K. and Gupta, R. C., Product Design and Manufacturing, PHI Learning, 2013.
- 5. Jamnia, A., Introduction to Product Design and Development for Engineers, CRC Press, 2018.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT501

SUSTAINABLE MANAGEMENT

LT P C 3 0 0 3

COURSE OBJECTIVES:

- To provide students with fundamental knowledge of the notion of corporate sustainability.
- To determine how organizations impacts on the environment and socio-technical systems, the relationship between social and environmental performance and competitiveness, the approaches and methods.

UNIT I MANAGEMENT OF SUSTAINABILITY

9

Management of sustainability -rationale and political trends: An introduction to sustainability management, International and European policies on sustainable development, theoretical pillars in sustainability management studies.

UNIT II CORPORATE SUSTAINABILITY AND RESPONSIBILITY

9

Corporate sustainability parameter, corporate sustainability institutional framework, integration of sustainability into strategic planning and regular business practices, fundamentals of stakeholder engagement.

UNIT III SUSTAINABILITY MANAGEMENT: STRATEGIES AND APPROACHES 9

Corporate sustainability management and competitiveness: Sustainability-oriented corporate strategies, markets and competitiveness, Green Management between theory and practice, Sustainable Consumption and Green Marketing strategies, Environmental regulation and strategic postures; Green Management approaches and tools; Green engineering: clean technologies and innovation processes; Sustainable Supply Chain Management and Procurement.

UNIT IV SUSTAINABILITY AND INNOVATION

S

Socio-technical transitions and sustainability, Sustainable entrepreneurship, Sustainable pioneers in green market niches, Smart communities and smart specializations.

UNIT V SUSTAINABLE MANAGEMENT OF RESOURCES, COMMODITIES AND COMMONS

Energy management, Water management, Waste management, Wild Life Conservation, Emerging trends in sustainable management, Case Studies.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- CO1: An understanding of sustainability management as an approach to aid in evaluating and minimizing environmental impacts while achieving the expected social impact.
- CO2: An understanding of corporate sustainability and responsible Business Practices
- CO3: Knowledge and skills to understand, to measure and interpret sustainabilityperformances.
- CO4: Knowledge of innovative practices in sustainable business and community management
- CO5: Deep understanding of sustainable management of resources and commodities

REFERENCES:

1. Daddi, T., Iraldo, F., Testa, Environmental Certification for Organizations and Products:

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

Management, 2015

- 2. Christian N. Madu, Handbook of Sustainability Management 2012
- 3. Petra Molthan-Hill, The Business Student's Guide to Sustainable Management: Principles and Practice, 2014
- 4. Margaret Robertson, Sustainability Principles and Practice, 2014
- 5. Peter Rogers, An Introduction to Sustainable Development, 2006

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT502

MICRO AND SMALL BUSINESS MANAGEMENT

LTPC 3 0 0 3

COURSE OBJECTIVES

- To familiarize students with the theory and practice of small business management.
- To learn the legal issues faced by small business and how they impact operations.

UNIT I INTRODUCTION TO SMALL BUSINESS

9

Creation, Innovation, entrepreneurship and small business - Defining Small Business -Role of Owner - Manager - government policy towards small business sector -elements of entrepreneurship -evolution of entrepreneurship -Types of Entrepreneurship - social, civic, corporate - Business life cycle - barriers and triggers to new venture creation - process to assist start ups - small business and family business.

UNIT II SCREENING THE BUSINESS OPPORTUNITY AND FORMULATING THE BUSINESS PLAN

Concepts of opportunity recognition; Key factors leading to new venture failure; New venture screening process; Applying new venture screening process to the early stage small firm Role planning in small business – importance of strategy formulation – management skills for small business creation and development.

UNIT III BUILDING THE RIGHT TEAM AND MARKETING STRATEGY 9

Management and Leadership – employee assessments – Tuckman's stages of group development - The entrepreneurial process model - Delegation and team building - Comparison of HR management in small and large firms - Importance of coaching and how to apply a coaching model. Marketing within the small business - success strategies for small business marketing - customer delight and business generating systems, - market research, - assessing market performance- sales management and strategy - the marketing mix and marketing strategy.

UNIT IV FINANCING SMALL BUSINESS

9

Main sources of entrepreneurial capital; Nature of 'bootstrap' financing - Difference between cash and profit - Nature of bank financing and equity financing - Funding-equity gap for small firms. Importance of working capital cycle - Calculation of break-even point - Power of gross profit margin-Pricing for profit - Credit policy issues and relating these to cash flow management and profitability.

UNIT V VALUING SMALL BUSINESS AND CRISIS MANAGEMENT

9

Causes of small business failure - Danger signals of impending trouble - Characteristics of poorly performing firms - Turnaround strategies - Concept of business valuation - Different valuation measurements - Nature of goodwill and how to measure it - Advantages and disadvantages of buying an established small firm - Process of preparing a business for sale.

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1. Familiarise the students with the concept of small business

CO2. In depth knowledge on small business opportunities and challenges

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

CO3. Ability to devise plans for small business by building the right skills and marketing strategies

CO4. Identify the funding source for small start ups

CO5. Business evaluation for buying and selling of small firms

- 1. Hankinson,A.(2000). "The key factors in the profile of small firm owner-managers that influence business performance. The South Coast Small Firms Survey, 1997-2000." Industrial and Commercial Training 32(3):94-98.
- 2. Parker,R.(2000). "Small is not necessarily beautiful: An evaluation of policy support for small and medium-sized enterprise in Australia." Australian Journal of Political Science 35(2):239-253.
- 3. Journal articles on SME's.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT503 INTELLECTUAL PROPERTY RIGHTS

LTPC 3 0 0 3

COURSE OBJECTIVE

To understand intellectual property rights and its valuation.

UNIT I INTRODUCTION

9

Intellectual property rights - Introduction, Basic concepts, Patents, Copyrights, Trademarks, Trade Secrets, Geographic Indicators; Nature of Intellectual Property, Technological Research, Inventions and Innovations, History - the way from WTO to WIPO, TRIPS.

UNIT II PROCESS

9

New Developments in IPR, Procedure for grant of Patents, TM, Gls, Patenting under Patent Cooperation Treaty, Administration of Patent system in India, Patenting in foreign countries.

UNIT III STATUTES

9

International Treaties and conventions on IPRs, The TRIPs Agreement, PCT Agreement, The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act and Issues of Academic Entrepreneurship.

UNIT IV STRATEGIES IN INTELLECTUAL PROPERTY

9

Strategies for investing in R&D, Patent Information and databases, IPR strength in India, Traditional Knowledge, Case studies.

UNIT V MODELS

9

TOTAL: 45 PERIODS

The technologies Know-how, concept of ownership, Significance of IP in Value Creation, IPValuation and IP Valuation Models, Application of Real Option Model in Strategic Decision Making, Transfer and Licensing.

COURSE OUTCOMES

CO1: Understanding of intellectual property and appreciation of the need to protect it

CO2: Awareness about the process of patenting

CO3: Understanding of the statutes related to IPR

CO4: Ability to apply strategies to protect intellectual property

CO5: Ability to apply models for making strategic decisions related to IPR

- 1. Sople Vinod, Managing Intellectual Property by (Prentice hall of India Pvt.Ltd), 2006.
- 2. Intellectual Property rights and copyrights, EssEss Publications.
- 3. Primer, R. Anita Rao and Bhanoji Rao, Intellectual Property Rights, Lastain Book company. Edited by Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 2006.
- 4. WIPO Intellectual Property Hand book.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT504 ETHICAL MANAGEMENT

LTPC 3 0 0 3

COURSE OBJECTIVE

To help students develop knowledge and competence in ethical management and decision making in organizational contexts.

UNIT I ETHICS AND SOCIETY

9

Ethical Management- Definition, Motivation, Advantages-Practical implications of ethical management. Managerial ethics, professional ethics, and social Responsibility-Role of culture and society's expectations- Individual and organizational responsibility to society and the community.

UNIT II ETHICAL DECISION MAKING AND MANAGEMENT IN A CRISIS

9

Managing in an ethical crisis, the nature of a crisis, ethics in crisis management, discuss case studies, analyze real-world scenarios, develop ethical management skills, knowledge, and competencies. Proactive crisis management.

UNIT III STAKEHOLDERS IN ETHICAL MANAGEMENT

9

Stakeholders in ethical management, identifying internal and external stakeholders, nature of stakeholders, ethical management of various kinds of stakeholders: customers (product and service issues), employees (leadership, fairness, justice, diversity) suppliers, collaborators, business, community, the natural environment (the sustainability imperative, green management, Contemporary issues).

UNIT IV INDIVIDUAL VARIABLES IN ETHICAL MANJAGEMENT

9

Understanding individual variables in ethics, managerial ethics, concepts in ethical psychologyethical awareness, ethical courage, ethical judgment, ethical foundations, ethical emotions/intuitions/intensity. Utilization of these concepts and competencies for ethical decisionmaking and management.

UNIT V PRACTICAL FIELD-GUIDE, TECHNIQUES AND SKILLS

Q

TOTAL: 45 PERIODS

Ethical management in practice, development of techniques and skills, navigating challenges and dilemmas, resolving issues and preventing unethical management proactively. Role modelling and creating a culture of ethical management and human flourishing.

COURSE OUTCOMES

CO1: Role modelling and influencing the ethical and cultural context.

CO2: Respond to ethical crises and proactively address potential crises situations.

CO3: Understand and implement stakeholder management decisions.

CO4: Develop the ability, knowledge, and skills for ethical management.

CO5: Develop practical skills to navigate, resolve and thrive in management situations

- 1. Brad Agle, Aaron Miller, Bill O' Rourke, The Business Ethics Field Guide: the essential companion to leading your career and your company, 2016.
- 2. Steiner & Steiner, Business, Government & Society: A managerial Perspective, 2011.
- 3. Lawrence & Weber, Business and Society: Stakeholders, Ethics, Public Policy, 2020.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OE513 IOT FOR SMART SYSTEMS

LTPC 3 0 0 3

COURSE OBJECTIVES:

- To study about Internet of Things technologies and its role in real time applications.
- To introduce the infrastructure required for IoT
- To familiarize the accessories and communication techniques for IoT.
- To provide insight about the embedded processor and sensors required for IoT
- To familiarize the different platforms and Attributes for IoT

UNIT I INTRODUCTION TO INTERNET OF THINGS

9

Overview, Hardware and software requirements for IOT, Sensor and actuators, Technology drivers, Business drivers, Typical IoT applications, Trends and implications.

UNIT II OT ARCHITECTURE

9

IoT reference model and architecture -Node Structure - Sensing, Processing, Communication, Powering, Networking - Topologies, Layer/Stack architecture, IoT standards, Cloud computing for IoT, Bluetooth, Bluetooth Low Energy beacons.

UNIT III PROTOCOLS AND WIRELESS TECHNOLOGIES FOR IOT PROTOCOLS:

9

NFC, SCADA and RFID, Zigbee MIPI, M-PHY, UniPro, SPMI, SPI, M-PCIe GSM, CDMA, LTE, GPRS, small cell.

Wireless technologies for IoT: WiFi (IEEE 802.11), Bluetooth/Bluetooth Smart, ZigBee/ZigBee Smart, UWB (IEEE 802.15.4), 6LoWPAN, Proprietary systems-Recent trends.

UNIT IV IOT PROCESSORS

9

Services/Attributes: Big-Data Analytics for IOT, Dependability, Interoperability, Security, Maintainability.

Embedded processors for IOT: Introduction to Python programming -Building IOT with RASPERRY PI and Arduino.

UNIT V CASE STUDIES

9

Industrial IoT, Home Automation, smart cities, Smart Grid, connected vehicles, electric vehicle charging, Environment, Agriculture, Productivity Applications, IOT Defense

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will have the ability to

CO1: Analyze the concepts of IoT and its present developments.

CO2: Compare and contrast different platforms and infrastructures available for IoT

CO3: Explain different protocols and communication technologies used in IoT

CO4: Analyze the big data analytic and programming of IoT

CO5: Implement IoT solutions for smart applications

REFERENCES:

1. ArshdeepBahga and VijaiMadisetti : A Hands-on Approach "Internet of Things", Universities

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

Press 2015.

- 2. Oliver Hersent, David Boswarthick and Omar Elloumi "The Internet of Things", Wiley, 2016.
- 3. Samuel Greengard, "The Internet of Things", The MIT press, 2015.
- 4. Adrian McEwen and Hakim Cassimally "Designing the Internet of Things "Wiley, 2014.
- 5. Jean- Philippe Vasseur, Adam Dunkels, "Interconnecting Smart Objects with IP: The Next Internet" Morgan Kuffmann Publishers, 2010.
- 6. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", John Wiley and sons, 2014.
- 7. Lingyang Song/DusitNiyato/ Zhu Han/ Ekram Hossain," Wireless Device-to-Device Communications and Networks, CAMBRIDGE UNIVERSITY PRESS,2015.
- 8. OvidiuVermesan and Peter Friess (Editors), "Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems", River Publishers Series in Communication, 2013.
- 9. Vijay Madisetti, ArshdeepBahga, "Internet of Things (A Hands on-Approach)", 2014.
- 10. Zach Shelby, Carsten Bormann, "6LoWPAN: The Wireless Embedded Internet", John Wiley and sons, 2009.
- 11. Lars T.Berger and Krzysztof Iniewski, "Smart Grid applications, communications and security", Wiley, 2015.
- 12. JanakaEkanayake, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama and Nick Jenkins, " Smart Grid Technology and Applications", Wiley, 2015.
- 13. UpenaDalal,"Wireless Communications & Networks,Oxford,2015.

(An Autonomous Institution, Affiliated to Anna University, Chennai) Department: Computer Science and Engineering, R2024, CBCS **OPEN ELECTIVES**

P240E514 MACHINE LEARNING AND DEEP LEARNING LTPC 3 0 0 3

COURSE OBJECTIVES:

The course is aimed at

- Understanding about the learning problem and algorithms
- Providing insight about neural networks
- Introducing the machine learning fundamentals and significance
- Enabling the students to acquire knowledge about pattern recognition.
- Motivating the students to apply deep learning algorithms for solving real life problems.

UNIT I LEARNING PROBLEMS AND ALGORITHMS

9

Various paradigms of learning problems, Supervised, Semi-supervised and Unsupervised algorithms

UNIT II NEURAL NETWORKS

9

Differences between Biological and Artificial Neural Networks - Typical Architecture, Common Activation Functions, Multi-layer neural network, Linear Separability, Hebb Net, Perceptron, Adaline, Standard Back propagation Training Algorithms for Pattern Association - Hebb rule and Delta rule. Hetero associative, Auto associative, Kohonen Self Organising Maps, Examples of Feature Maps, Learning Vector Quantization, Gradient descent, Boltzmann Machine Learning.

UNIT III MACHINE LEARNING - FUNDAMENTALS & FEATURE SELECTIONS & **CLASSIFICATIONS**

Classifying Samples: The confusion matrix, Accuracy, Precision, Recall, F1- Score, the curse of dimensionality, training, testing, validation, cross validation, overfitting, under-fitting the data, early stopping, regularization, bias and variance. Feature Selection, normalization, dimensionality reduction, Classifiers: KNN, SVM, Decision trees, Naïve Bayes, Binary classification, multi class classification, clustering.

DEEP LEARNING: CONVOLUTIONAL NEURAL NETWORKS

Feed forward networks, Activation functions, back propagation in CNN, optimizers, batch normalization, convolution layers, pooling layers, fully connected layers, dropout, Examples of CNNs.

UNIT V DEEP LEARNING: RNNS, AUTOENCODERS AND GANS

TOTAL: 45 PERIODS

State, Structure of RNN Cell, LSTM and GRU, Time distributed layers, Generating Text, Autoencoders: Convolutional Autoencoders, Denoising autoencoders, Variational autoencoders, GANs: The discriminator, generator, DCGANs

COURSE OUTCOMES (CO):

At the end of the course the student will be able to

CO1: Illustrate the categorization of machine learning algorithms.

CO2: Compare and contrast the types of neural network architectures, activation functions

CO3: Acquaint with the pattern association using neural networks

CO4: Elaborate various terminologies related with pattern recognition and architectures of convolutional neural networks

9

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

CO5: Construct different feature selection and classification techniques and advanced neural network architectures such as RNN, Autoencoders, and GANs.

- 1. J. S. R. Jang, C. T. Sun, E. Mizutani, Neuro Fuzzy and Soft Computing A Computational Approach to Learning and Machine Intelligence, 2012, PHI learning
- 2. Deep Learning, Ian Good fellow, YoshuaBengio and Aaron Courville, MIT Press, ISBN: 9780262035613, 2016.
- 3. The Elements of Statistical Learning. Trevor Hastie, Robert Tibshirani and Jerome Friedman. Second Edition. 2009.
- 4. Pattern Recognition and Machine Learning. Christopher Bishop. Springer. 2006.
- 5. Understanding Machine Learning. Shai Shalev-Shwartz and Shai Ben-David. Cambridge University Press. 2017.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P240E515 RENEWABLE ENERGY TECHNOLOGY

LTPC 3 0 0 3

OBJECTIVES:

To impart knowledge on

- Different types of renewable energy technologies
- Standalone operation, grid connected operation of renewable energy systems

UNIT I INTRODUCTION

9

Classification of energy sources – Co2 Emission - Features of Renewable energy - Renewable energy scenario in India -Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment Per Capital Consumption - CO₂ Emission - importance of renewable energy sources, Potentials – Achievements– Applications.

UNIT II SOLAR PHOTOVOLTAICS

9

Solar Energy: Sun and Earth-Basic Characteristics of solar radiation- angle of sunrays on solar collector-Estimating Solar Radiation Empirically - Equivalent circuit of PV Cell- Photovoltaic cell-characteristics: P-V and I-V curve of cell-Impact of Temperature and Insolation on I-V characteristics-Shading Impacts on I-V characteristics-Bypass diode -Blocking diode.

UNIT III PHOTOVOLTAIC SYSTEM DESIGN

9

Block diagram of solar photo voltaic system: Line commutated converters (inversion mode) - Boost and buck-boost converters - selection of inverter, battery sizing, array sizing - PV systems classification- standalone PV systems - Grid tied and grid interactive inverters- grid connection issues.

UNIT IV WIND ENERGY CONVERSION SYSTEMS

9

Origin of Winds: Global and Local Winds- Aerodynamics of Wind turbine-Derivation of Betz's limit-Power available in wind-Classification of wind turbine: Horizontal Axis wind turbine and Vertical axis wind turbine- Aerodynamic Efficiency-Tip Speed-Tip Speed Ratio-Solidity-Blade Count-Power curve of wind turbine - Configurations of wind energy conversion systems: Type A, Type B, Type C and Type D Configurations- Grid connection Issues - Grid integrated SCIG and PMSG based WECS.

UNIT V OTHER RENEWABLE ENERGY SOURCES

9

Qualitative study of different renewable energy resources: ocean, Biomass, Hydrogen energy systems, Fuel cells, Ocean Thermal Energy Conversion (OTEC), Tidal and wave energy, Geothermal Energy Resources.

TOTAL: 45 PERIODS

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

OUTCOMES:

After completion of this course, the student will be able to:

CO1: Demonstrate the need for renewable energy sources.

CO2: Develop a stand-alone photo voltaic system and implement a maximum power point tracking in the PV system.

CO3: Design a stand-alone and Grid connected PV system.

CO4: Analyze the different configurations of the wind energy conversion systems.

CO5: Realize the basic of various available renewable energy sources

- 1. S.N.Bhadra, D. Kastha, & S. Banerjee "Wind Electrical Systems", Oxford UniversityPress, 2009.
- 2. Rai. G.D, "Non conventional energy sources", Khanna publishes, 1993.
- 3. Rai. G.D," Solar energy utilization", Khanna publishes, 1993.
- 4. Chetan Singh Solanki, "Solar Photovoltaics: Fundamentals, Technologies and Applications", PHI Learning Private Limited, 2012.
- 5. John Twideu and Tony Weir, "Renewal Energy Resources" BSP Publications, 2006
- 6. Gray, L. Johnson, "Wind energy system", prentice hall of India, 1995.
- 7. B.H.Khan, "Non-conventional Energy sources", McGraw-hill, 2nd Edition, 2009.
- 8. Fang Lin Luo Hong Ye, "Renewable Energy systems", Taylor & Francis Group,2013.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P240E516 SMART GRID L T P C 3 0 0 3

COURSE OBJECTIVES

- To Study about Smart Grid technologies, different smart meters and advanced metering infrastructure.
- To know about the function of smart grid.
- To familiarize the power quality management issues in Smart Grid.
- To familiarize the high performance computing for Smart Grid applications
- To get familiarized with the communication networks for Smart Grid applications

UNIT I INTRODUCTION TO SMART GRID

9

Evolution of Electric Grid, Concept, Definitions and Need for Smart Grid, Smart grid drivers, functions, opportunities, challenges and benefits, Difference between conventional & Smart Grid, Comparison of Micro grid and Smart grid, Present development & International policies in Smart Grid, Smart Grid Initiative for Power Distribution Utility in India – Case Study.

UNIT II SMART GRID TECHNOLOGIES

9

Technology Drivers, Smart Integration of energy resources, Smart substations, Substation Automation, Feeder Automation ,Transmission systems: EMS, FACTS and HVDC, Wide area monitoring, Protection and control, Distribution systems: DMS, Volt/Var control, Fault Detection, Isolation and service restoration, Outage management, High-Efficiency Distribution Transformers, Phase Shifting Transformers, Plug in Hybrid Electric Vehicles (PHEV) – Grid to Vehicle and Vehicle to Grid charging concepts.

UNIT III SMART METERS AND ADVANCED METERING INFRASTRUCTURE 9

Introduction to Smart Meters, Advanced Metering infrastructure (AMI) drivers and benefits, AMI protocols, standards and initiatives, AMI needs in the smart grid, Phasor Measurement Unit(PMU) & their application for monitoring & protection. Demand side management and demand response programs, Demand pricing and Time of Use, Real Time Pricing, Peak Time Pricing.

UNIT IV POWER QUALITY MANAGEMENT IN SMART GRID

9

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

Unit V HIGH PERFORMANCE COMPUTING FOR SMART GRID APPLICATIONS 9

Architecture and Standards -Local Area Network (LAN), House Area Network (HAN), Wide Area Network (WAN), Broadband over Power line (BPL), PLC, Zigbee, GSM, IP based Protocols, Basics of Web Service and CLOUD Computing, Cyber Security for Smart Grid.

TOTAL: 45 PERIODS

COURSE OUTCOME:

Students able to

CO1: Relate with the smart resources, smart meters and other smart devices.

CO2: Explain the function of Smart Grid.

CO3: Experiment the issues of Power Quality in Smart Grid.

CO4: Analyze the performance of Smart Grid.

CO5: Recommend suitable communication networks for smart grid applications

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

- 1. Stuart Borlase 'Smart Grid: Infrastructure, Technology and Solutions', CRC Press 2012.
- 2. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, 'Smart Grid: Technology and Applications', Wiley, 2012.
- 3. Mini S. Thomas, John D McDonald, 'Power System SCADA and Smart Grids', CRC Press, 2015
- 4. Kenneth C.Budka, Jayant G. Deshpande, Marina Thottan, 'Communication Networks for Smart Grids', Springer, 2014
- 5. SMART GRID Fundamentals of Design and Analysis, James Momoh, IEEE press, A John Wiley & Sons, Inc., Publication.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT505 BIG DATA ANALYTICS L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the basics of big data analytics
- To understand the search methods and visualization
- To learn mining data streams
- To learn frameworks
- To gain knowledge on R language

UNIT I INTRODUCTION TO BIG DATA

9

Introduction to Big Data Platform – Challenges of Conventional Systems - Intelligent data analysis –Nature of Data - Analytic Processes and Tools - Analysis Vs Reporting - Modern Data Analytic Tools- Statistical Concepts: Sampling Distributions - Re-Sampling - Statistical Inference - Prediction Error.

UNIT II SEARCH METHODS AND VISUALIZATION

9

Search by simulated Annealing – Stochastic, Adaptive search by Evaluation – Evaluation Strategies –Genetic Algorithm – Genetic Programming – Visualization – Classification of Visual Data Analysis Techniques – Data Types – Visualization Techniques – Interaction techniques – Specific Visual data analysis Techniques

UNIT III MINING DATA STREAMS

9

Introduction To Streams Concepts – Stream Data Model and Architecture - Stream Computing - Sampling Data in a Stream – Filtering Streams – Counting Distinct Elements in a Stream – Estimating Moments – Counting Oneness in a Window – Decaying Window - Real time Analytics Platform(RTAP) Applications - Case Studies - Real Time Sentiment Analysis, Stock Market Predictions

UNIT IV FRAMEWORKS

9

MapReduce – Hadoop, Hive, MapR – Sharding – NoSQL Databases - S3 - Hadoop Distributed File Systems – Case Study- Preventing Private Information Inference Attacks on Social Networks- Grand Challenge: Applying Regulatory Science and Big Data to Improve Medical Device Innovation

UNIT V R LANGUAGE

C

Overview, Programming structures: Control statements -Operators -Functions -Environment and scope issues -Recursion -Replacement functions, R data structures: Vectors -Matrices and arrays - Lists -Data frames -Classes, Input/output, String manipulations

COURSE OUTCOMES:

CO1:understand the basics of big data analytics

CO2: Ability to use Hadoop, Map Reduce Framework.

CO3: Ability to identify the areas for applying big data analytics for increasing the business outcome.

CO4:gain knowledge on R language

CO5: Contextually integrate and correlate large amounts of information to gain faster insights.

TOTAL:45 PERIODS

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

REFERENCE:

- 1. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 2. Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 3rd edition 2020.
- 3. Norman Matloff, The Art of R Programming: A Tour of Statistical Software Design, No Starch Press, USA, 2011.
- 4. Bill Franks, Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, John Wiley & sons, 2012.
- 5. Glenn J. Myatt, Making Sense of Data, John Wiley & Sons, 2007.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT506 INTERNET OF THINGS AND CLOUD

LT PC 3 0 0 3

COURSE OBJECTIVES:

- To understand Smart Objects and IoT Architectures
- To learn about various IOT-related protocols
- To build simple IoT Systems using Arduino and Raspberry Pi.
- To understand data analytics and cloud in the context of IoT
- To develop IoT infrastructure for popular applications

UNIT I FUNDAMENTALS OF IOT

Q

Introduction to IoT – IoT definition – Characteristics – IoT Complete Architectural Stack – IoT enabling Technologies – IoT Challenges. Sensors and Hardware for IoT – Hardware Platforms – Arduino, Raspberry Pi, Node MCU. A Case study with any one of the boards and data acquisition from sensors.

UNIT II PROTOCOLS FOR IoT

9

Infrastructure protocol (IPV4/V6/RPL), Identification (URIs), Transport (Wifi, Lifi, BLE), Discovery, Data Protocols, Device Management Protocols. – A Case Study with MQTT/CoAP usage-loT privacy, security and vulnerability solutions.

UNIT III CASE STUDIES/INDUSTRIAL APPLICATIONS

9

Case studies with architectural analysis: IoT applications – Smart City – Smart Water – Smart Agriculture – Smart Energy – Smart Healthcare – Smart Transportation – Smart Retail – Smart waste management.

UNIT IV CLOUD COMPUTING INTRODUCTION

9

Introduction to Cloud Computing - Service Model - Deployment Model- Virtualization Concepts - Cloud Platforms - Amazon AWS - Microsoft Azure - Google APIs.

UNIT V IOT AND CLOUD

9

IoT and the Cloud - Role of Cloud Computing in IoT - AWS Components - S3 - Lambda - AWS IoT Core -Connecting a web application to AWS IoT using MQTT- AWS IoT Examples. Security Concerns, Risk Issues, and Legal Aspects of Cloud Computing- Cloud Data Security

TOTAL:45 PERIODS

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1: Understand the various concept of the IoT and their technologies..

CO2: Develop IoT application using different hardware platforms

CO3: Implement the various IoT Protocols

CO4: Understand the basic principles of cloud computing.

CO5: Develop and deploy the IoT application into cloud environment

- 1. "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman ,CRC Press, 2017
- 2. Adrian McEwen, Designing the Internet of Things, Wiley, 2013.
- 3. EMC Education Services, "Data Science and Big Data Analytics: Discovering, Analyzing,

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

Visualizing and Presenting Data", Wiley publishers, 2015.

- 4. Simon Walkowiak, "Big Data Analytics with R" PackT Publishers, 2016
- 5. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2015.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT507 MEDICAL ROBOTICS

LT PC 3 0 03

COURSE OBJECTIVES:

- To explain the basic concepts of robots and types of robots
- To discuss the designing procedure of manipulators, actuators and grippers
- To impart knowledge on various types of sensors and power sources
- To explore various applications of Robots in Medicine
- To impart knowledge on wearable robots

UNIT I INTRODUCTION TO ROBOTICS

9

Introduction to Robotics, Overview of robot subsystems, Degrees of freedom, configurations and concept of workspace, Dynamic Stabilization

Sensors and Actuators

Sensors and controllers, Internal and external sensors, position, velocity and acceleration sensors, Proximity sensors, force sensors Pneumatic and hydraulic actuators, Stepper motor control circuits, End effectors, Various types of Grippers, PD and PID feedback actuator models

UNIT II MANIPULATORS & BASIC KINEMATICS

9

Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and pneumatic manipulator, Forward Kinematic Problems, Inverse Kinematic Problems, Solutions of Inverse Kinematic problems

Navigation and Treatment Planning

Variable speed arrangements, Path determination – Machinery vision, Ranging – Laser – Acoustic, Magnetic, fiber optic and Tactile sensor

UNIT III SURGICAL ROBOTS

9

Da Vinci Surgical System, Image guided robotic systems for focal ultrasound based surgical applications, System concept for robotic Tele-surgical system for off-pump, CABG surgery, Urologic applications, Cardiac surgery, Neuro-surgery, Pediatric and General Surgery, Gynecologic Surgery, General Surgery and Nanorobotics. Case Study

UNIT IV REHABILITATION AND ASSISTIVE ROBOTS

9

Pediatric Rehabilitation, Robotic Therapy for the Upper Extremity and Walking, Clinical-Based Gait Rehabilitation Robots, Motion Correlation and Tracking, Motion Prediction, Motion Replication. Portable Robot for Tele rehabilitation, Robotic Exoskeletons – Design considerations, Hybrid assistive limb. Case Study

UNIT V WEARABLE ROBOTS

9

Augmented Reality, Kinematics and Dynamics for Wearable Robots, Wearable Robot technology, Sensors, Actuators, Portable Energy Storage, Human–robot cognitive interaction (cHRI), Human–robot physical interaction (pHRI), Wearable Robotic Communication - case study

TOTAL:45 PERIODS

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

COURSE OUTCOMES:

CO1: Describe the configuration, applications of robots and the concept of grippers and actuators

CO2: Explain the functions of manipulators and basic kinematics

CO3: Describe the application of robots in various surgeries

CO4: Design and analyze the robotic systems for rehabilitation

CO5: Design the wearable robots

- 1. Nagrath and Mittal, "Robotics and Control", Tata McGraw Hill, First edition, 2003
- 2. Spong and Vidhyasagar, "Robot Dynamics and Control", John Wiley and Sons, First edition, 2008
- 3. Fu.K.S, Gonzalez. R.C., Lee, C.S.G, "Robotics, control", sensing, Vision and Intelligence, Tata McGraw Hill International, First edition, 2008
- 4. Bruno Siciliano, Oussama Khatib, Springer Handbook of Robotics, 1st Edition, Springer, 2008
- 5. Shane (S.Q.) Xie, Advanced Robotics for Medical Rehabilitation Current State of the Art and Recent Advances, Springer, 2016
- 6. Sashi S Kommu, Rehabilitation Robotics, I-Tech Education and Publishing, 2007
- 7. Jose L. Pons, Wearable Robots: Biomechatronic Exoskeletons, John Wiley & Sons Ltd, England, 2008
- 8. Howie Choset, Kevin Lynch, Seth Hutchinson, "Principles of Robot Motion: Theory, Algorithms, and Implementations", Prentice Hall of India, First edition, 2005
- 9. Philippe Coiffet, Michel Chirouze, "An Introduction to Robot Technology", Tata McGraw Hill, First Edition, 1983
- 10. Jacob Rosen, Blake Hannaford & Richard M Satava, "Surgical Robotics: System Applications & Visions", Springer 2011
- 11. Jocelyn Troccaz, Medical Robotics, Wiley, 2012
- 12. Achim Schweikard, Floris Ernst, Medical Robotics, Springer, 2015

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT508 EMBEDDED AUTOMATION

LTP C 3 00 3

COURSE OBJECTIVES:

- To learn about the process involved in the design and development of real-time embedded system
- To develop the embedded C programming skills on 8-bit microcontroller
- To study about the interfacing mechanism of peripheral devices with 8-bit microcontrollers
- To learn about the tools, firmware related to microcontroller programming
- To build a home automation system

UNIT - I INTRODUCTION TO EMBEDDED C PROGRAMMING

9

C Overview and Program Structure - C Types, Operators and Expressions - C Control Flow - C Functions and Program Structures - C Pointers And Arrays - FIFO and LIFO - C Structures - Development Tools

UNIT - II AVR MICROCONTROLLER

9

ATMEGA 16 Architecture - Nonvolatile and Data Memories - Port System - Peripheral Features : Time Base, Timing Subsystem, Pulse Width Modulation, USART, SPI, Two Wire Serial Interface, ADC, Interrupts - Physical and Operating Parameters

UNIT – III HARDWARE AND SOFTWARE INTERFACING WITH 8-BIT SERIES CONTROLLERS

9

Lights and Switches - Stack Operation - Implementing Combinational Logic - Expanding I/O - Interfacing Analog To Digital Convertors - Interfacing Digital To Analog Convertors - LED Displays : Seven Segment Displays, Dot Matrix Displays - LCD Displays - Driving Relays - Stepper Motor Interface - Serial EEPROM - Real Time Clock - Accessing Constants Table - Arbitrary Waveform Generation - Communication Links - System Development Tools

UNIT - IV VISION SYSTEM

9

Fundamentals of Image Processing - Filtering - Morphological Operations - Feature Detection and Matching - Blurring and Sharpening - Segmentation - Thresholding - Contours - Advanced Contour Properties - Gradient - Canny Edge Detector - Object Detection - Background Subtraction

UNIT – V HOME AUTOMATION

9

Home Automation - Requirements - Water Level Notifier - Electric Guard Dog - Tweeting Bird Feeder - Package Delivery Detector - Web Enabled Light Switch - Curtain Automation - Android Door Lock - Voice Controlled Home Automation - Smart Lighting - Smart Mailbox - ElectricityUsage Monitor - Proximity Garage Door Opener - Vision Based Authentic Entry System

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On successful completion of this course, students will be able to

CO1: analyze the 8-bit series microcontroller architecture, features and pin details

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

CO2: write embedded C programs for embedded system applicationCO3: design and develop real time systems using AVR microcontrollersCO4: design and develop the systems based on vision mechanismCO5: design and develop a real time home automation system

- 1. Dhananjay V. Gadre, "Programming and Customizing the AVR Microcontroller", McGraw-Hill, 2001.
- 2. Joe Pardue, "C Programming for Microcontrollers", Smiley Micros, 2005.
- 3. Steven F. Barrett, Daniel J. Pack, "ATMEL AVR Microcontroller Primer: Programming and Interfacing", Morgan & Claypool Publishers, 2012
- 4. Mike Riley, "Programming Your Home Automate With Arduino, Android and Your Computer", the Pragmatic Programmers, Llc, 2012.
- 5. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2011.
- 6. Kevin P. Murphy, "Machine Learning a Probabilistic Perspective", the MIT Press Cambridge, Massachusetts, London, 2012.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT509 ENVIRONMENTAL SUSTAINABILITY L T P C 3 0 0 3

UNIT I INTRODUCTION

9

Valuing the Environment: Concepts, Valuing the Environment: Methods, Property Rights, Externalities, and Environmental Problems

UNIT II CONCEPT OF SUSTAINABILITY

9

Sustainable Development: Defining the Concept, the Population Problem, Natural Resource Economics: An Overview, Energy, Water, Agriculture

UNIT III SIGNIFICANCE OF BIODIVERSITY

9

Biodiversity, Forest Habitat, Commercially Valuable Species, Stationary - Source Local Air Pollution, Acid Rain and Atmospheric Modification, Transportation

UNIT IV POLLUTION IMPACTS

9

Water Pollution, Solid Waste and Recycling, Toxic Substances and Hazardous Wastes, Global Warming.

UNIT V ENVIRONMENTAL ECONOMICS

9

Development, Poverty, and the Environment, Visions of the Future, Environmental economics and policy by Tom Tietenberg, Environmental Economics

TOTAL: 45 PERIODS

- 1. Andrew Hoffman, Competitive Environmental Strategy A Guide for the Changing Business Landscape, Island Press.
- 2. Stephen Doven, Environment and Sustainability Policy: Creation, Implementation, Evaluation, the Federation Press, 2005
- 3. Robert Brinkmann., Introduction to Sustainability, Wiley-Blackwell., 2016
- 4. Niko Roorda., Fundamentals of Sustainable Development, 3rd Edn, Routledge, 2020
- 5. Bhavik R Bakshi., Sustainable Engineering: Principles and Practice, Cambridge University Press, 2019

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT510

TEXTILE REINFORCED COMPOSITES

LTPC 3003

UNIT I REINFORCEMENTS

9

Introduction – composites –classification and application; reinforcements- fibres and its properties; preparation of reinforced materials and quality evaluation; preforms for various composites

UNIT II MATRICES

g

Preparation, chemistry, properties and applications of thermoplastic and thermoset resins; mechanism of interaction of matrices and reinforcements; optimization of matrices

UNIT III COMPOSITE MANUFACTURING

9

Classification; methods of composites manufacturing for both thermoplastics and thermosets- Hand layup, Filament Winding, Resin transfer moulding, prepregs and autoclave moulding, pultrusion, vacuum impregnation methods, compression moulding; post processing of composites and composite design requirements

UNIT IV TESTING

9

Fibre volume and weight fraction, specif ic gravity of composites, tensile, f lexural, impact, compression, inter laminar shear stress and fatigue properties of thermoset and thermoplastic composites.

UNIT V MECHANICS

9

Micro mechanics, macro mechanics of single layer, macro mechanics of laminate, classical lamination theory, failure theories and prediction of inter laminar stresses using at ware

TOTAL: 45 PERIODS

- 1. BorZ.Jang, "Advanced Polymer composites", ASM International, USA, 1994.
- 2. Carlsson L.A. and Pipes R.B., "Experimental Characterization of advanced composite Materials", Second Edition, CRCPress, New Jersey, 1996.
- 3. George LubinandStanley T.Peters, "Handbook of Composites", Springer Publications, 1998.
- 4. Mel. M. Schwartz, "Composite Materials", Vol. 1 &2, Prentice Hall PTR, New Jersey,1997.
- 5. RichardM.Christensen, "Mechanics of compositematerials", DoverPublications, 2005.
- 6. Sanjay K. Mazumdar, "Composites Manufacturing: Materials, Product, and Process Engineering", CRCPress, 2001

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT511

NANOCOMPOSITE MATERIALS

LT PC 3 0 0 3

UNIT I BASICS OF NANOCOMPOSITES

9

Nomenclature, Properties, features and processing of nanocomposites. Sample Preparation and Characterization of Structure and Physical properties. Designing, stability and mechanical properties and applications of super hard nanocomposites.

UNIT II METAL BASED NANOCOMPOSITES

9

Metal-metal nanocomposites, some simple preparation techniques and their properties. Metal-Oxide or Metal-Ceramic composites, Different aspects of their preparation techniques and their final properties and functionality. Fractal based glass-metal nanocomposites, its designing and fractal dimension analysis. Core-Shell structured nanocomposites

UNIT III POLYMER BASED NANOCOMPOSITES

9

Preparation and characterization of diblock Copolymer based nanocomposites; Polymer Carbon nanotubes based composites, their mechanical properties, and industrial possibilities.

UNIT IV NANOCOMPOSITE FROM BIOMATERIALS

9

Natural nanocomposite systems - spider silk, bones, shells; organic-inorganic nanocomposite formation through self-assembly. Biomimetic synthesis of nanocomposites material; Use of synthetic nanocomposites for bone, teeth replacement.

UNIT V NANOCOMPOSITE TECHNOLOGY

9

Nanocomposite membrane structures- Preparation and applications. Nanotechnology in Textiles and Cosmetics-Nano-fillers embedded polypropylene fibers – Soil repellence, Lotus effect - Nano finishing in textiles (UV resistant, anti-bacterial, hydrophilic, self-cleaning, flame retardant finishes), Sun-screen dispersions for UV protection using titanium oxide – Colour cosmetics. Nanotechnology in Food Technology - Nanopackaging for enhanced shelf life - Smart/Intelligent packaging.

TOTAL: 45 PERIODS

- 1. Introduction to Nanocomposite Materials. Properties, Processing, Characterization-Thomas E. Twardowski. 2007. DEStech Publications. USA.
- 2. Nanocomposites Science and Technology P. M. Ajayan, L.S. Schadler, P. V.Braun 2006.
- 3. Physical Properties of Carbon Nanotubes- R. Saito 1998.
- 4. Carbon Nanotubes (Carbon, Vol 33) M. Endo, S. Iijima, M.S. Dresselhaus 1997.
- 5. The search for novel, superhard materials- Stan Vepr; ek (Review Article) JVST A, 1999
- 6. Nanometer versus micrometer-sized particles-Christian Brosseau, Jamal BeN Youssef, Philippe Talbot, Anne-Marie Konn, (Review Article) J. Appl. Phys, Vol 93, 2003
- 7. Diblock Copolymer, Aviram (Review Article), Nature, 2002
- 8. Bikramjit Basu, Kantesh Balani Advanced Structural Ceramics, A John Wiley & Sons, Inc.,
- 9. P. Brown and K. Stevens, Nanofibers and Nanotechnology in Textiles, Woodhead publication, London, 2006

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

P24OT512 IPR, BIOSAFETY AND ENTREPRENEURSHIP

LT PC 3 0 0 3

UNIT I IPR 9

Intellectual property rights – Origin of the patent regime – Early patents act & Indian pharmaceutical industry – Types of patents – Patent Requirements – Application preparation filing and prosecution – Patentable subject matter – Industrial design, Protection of GMO's IP as a factor in R&D,IP's of relevance to biotechnology and few case studies.

UNIT II AGREEMENTS, TREATIES AND PATENT FILING PROCEDURES 9

History of GATT Agreement – Madrid Agreement – Hague Agreement – WIPO Treaties – Budapest Treaty – PCT – Ordinary – PCT – Conventional – Divisional and Patent of Addition – Specifications – Provisional and complete – Forms and fees Invention in context of "prior art" – Patent databases – Searching International Databases – Country-wise patent searches (USPTO,espacenet(EPO) – PATENT Scope (WIPO) – IPO, etc National & PCT filing procedure – Time frame and cost – Status of the patent applications filed – Precautions while patenting – disclosure/non-disclosure – Financial assistance for patenting – Introduction to existing schemes Patent licensing and agreement Patent infringement – Meaning, scope, litigation, case studies

UNIT III BIOSAFETY

9

Introduction – Historical Backround – Introduction to Biological Safety Cabinets – Primary Containment for Biohazards – Biosafety Levels – Biosafety Levels of Specific Microorganisms – Recommended Biosafety Levels for Infectious Agents and Infected Animals – Biosafety guidelines – Government of India.\

UNIT IV GENETICALLY MODIFIED ORGANISMS

9

Definition of GMOs & LMOs – Roles of Institutional Biosafety Committee – RCGM – GEAC etc. for GMO applications in food and agriculture – Environmental release of GMOs – Risk Analysis – Risk Assessment – Risk management and communication – Overview of National Regulations and relevant International Agreements including Cartegana Protocol.

UNIT V ENTREPRENEURSHIP DEVELOPMENT

9

Introduction – Entrepreneurship Concept – Entrepreneurship as a career – Entrepreneurial personality – Characteristics of successful Entrepreneur – Factors affecting entrepreneurial growth – Entrepreneurial Motivation – Competencies – Mobility – Entrepreneurship Development Programmes (EDP) - Launching Of Small Enterprise - Definition, Characteristics – Relationship between small and large units – Opportunities for an Entrepreneurial career – Role of small enterprise in economic development – Problems of smallscale industries – Institutional finance to entrepreneurs - Institutional support to entrepreneurs.

TOTAL: 45 PERIODS

- 1. Bouchoux, D.E., "Intellectual Property: The Law of Trademarks, Copyrights, Patents, and Trade Secrets for the Paralegal", 3rd Edition, Delmar Cengage Learning, 2008.
- 2. Fleming, D.O. and Hunt, D.L., "Biological Safety: Principles and Practices", 4th Edition, American Society for Microbiology, 2006.

(An Autonomous Institution, Affiliated to Anna University, Chennai)
Department: Computer Science and Engineering, R2024, CBCS
OPEN ELECTIVES

- 3. Irish, V., "Intellectual Property Rights for Engineers", 2nd Edition, The Institution of Engineering and Technology, 2005.
- 4. Mueller, M.J., "Patent Law", 3rd Edition, Wolters Kluwer Law & Business, 2009.
- 5. Young, T., "Genetically Modified Organisms and Biosafety: A Background Paper for Decision- Makers and Others to Assist in Consideration of GMO Issues" 1st Edition, World Conservation Union, 2004.
- 6. S.S Khanka, "Entrepreneurial Development", S.Chand & Company LTD, New Delhi, 2007.

363, Arcot Road, Kodambakkam, Chennai - 600 024. www.msec.edu.in

Email id: admin.office@msec.edu.in