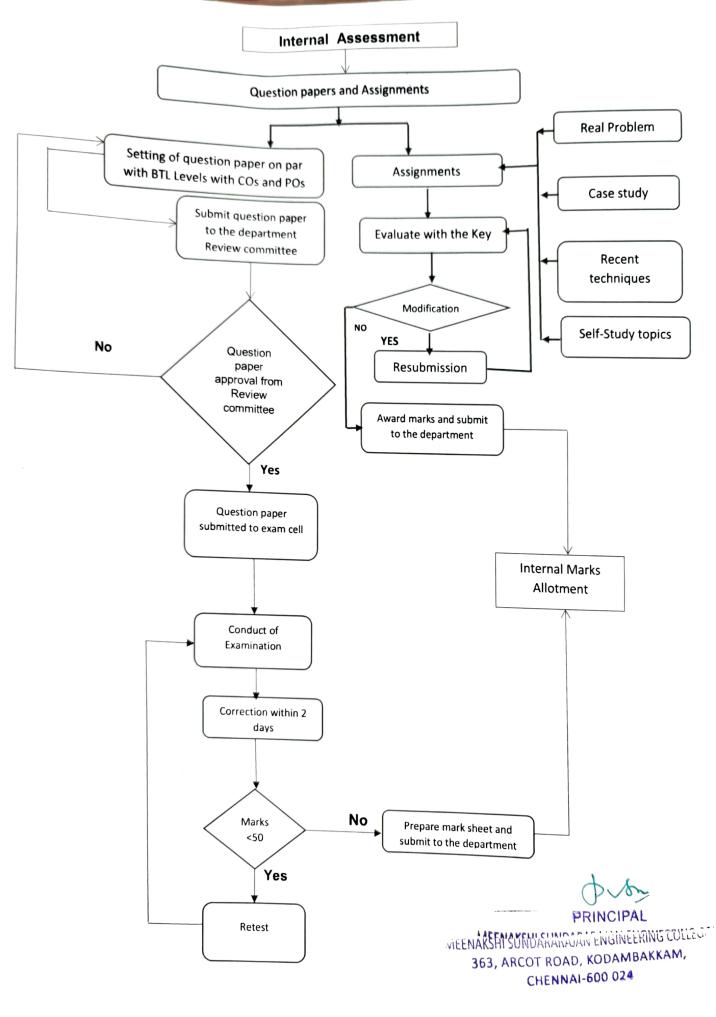
MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE



363, Arcot Road, Kodambakkam, Chennai – 24 Approved by AICTE & Affiliated to Anna University

email Id: principal@msec.edu.in
Website: www.msec.edu.in

INDEX

S.NO		CONTENTS	PAGE NO
1	Mechanisi 1.1 1.2	m of Internal Assessment Assessment Process of Theory Sample Track Sheet of Practical Sessions	2 3
	1.3	Assessment Process of Project Work	8
2	Academic	Calendar 2019-2020 Even Semester	11
3	Internal A	ssessment Test	
	3.1 3.2 3.3 3.4	Question Bank Time Table Seating Plan Dissemination of Timetable and Seating Plan	17 29 32 33
	3.5	Faculty Duty Chart	35
4	Sample R	eports of IAT	
	4.1 4.2	IAT Question Paper Sample Answer Sheet	39 40
5	Assignme	nt	
	5.1	Sample Assignment	55
6	Students'	Academic Performance Report to Parents	70

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE, KODAMBAKKAM, CHENNAI - 600024

LIST OF EXPERIMENTS

DEPT. : EEE

SUBJECT NAME: EF6511 Control & Instrumentation Cab

Expt. No	Experiment Title
<u>No</u>	Analog Simulation of Type o & Type 1 Systems
2	Ac Position Control System
3	De Position Control System
4	Transfu function of De Generation
5	Transfur Function of Dc Notor
6	Stability Analysis of Linear Systems
7	DESS tal Simulation of Linear Fixt Order System
_	Digital Simulation of Linear Second Order System
9	Design of lead, lag & lead lag compensators
10	Synchro Transmitter - Receiver characteristies
tended	C – Completed

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, KODAMBAKKAM, CHENNAI-600 024

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE, KODAMBAK M. CHENNAI - 600024

(STUDENTS' PRACTICAL WORK)

DEPT. : EEE

	DEPT EEE				9	UBJE	CT N		1-		-		20-	10	1 0	~						
Group	Name of Student					ODJE	CIN	AME :		6	2511		wn	tro	1 5	1-1	nst	<i>dum</i>	ent	atia	, L	- 1
No	rame of Student		(A-A	ttend		-			EX	PER	IMEN	IT NO	•					10			, 0	ay
		_	1	+_	2 K		3 00		4 6				A	T	7 11	1	2 200	(C- (Comp	plete	1)	
K	V 1011 . M 10	A	С	A	С	A	С		4 G	A	5 M	A	С	A	c	•		-	1-	+		
_	Adithya. MM	4/8		AL	1713	419	MADA	6-19	ulio	10	1	100	. 10	1.1.		2		1	C	A	rillo	
	Akshaya.P	4/8	38/8	413	1717	412	DNI	11/9	2110	13/9	2 11	194/1	1111	100/10	HILL	1291	g (b)	224	אומו	122/9	111110	
	Almas-A	8/4	28/6	419	1717	16/3	0.17	10/	1100	13/9	144	249	4.10	2918	80 8	39/	4/1	29/1	410	22/9	9110	
	Amathathana Arun Kauthan P	29/8	5/10	11 8	11/8	10/19	100	24	1	1		-40	ļ.,		10		L					
e	Anasheither AB	29/8	مبلت	4)(4	110	(5)(0	, VDY	1	5 10	151	2/10	20	2/10	417	M/8	276	5/10	4/8	271	de	5/10	
	Arun Kalltir PV	29/8	-40	100	1416	10/2	11/0	101)	5/5	1,1	14/1	an!	4/2	·417	11/8	1/20	510	41/8	13/8	279	1/10	
	7 332.7	0010	2710	Hile	1010	1813	10/8	924	Aio	24	4/1	27/5	Lill	43	NOTE	2 Spec	110	4/8	13/6	22/5	uln	
,	Ashrain kumaris	10/1	280	100	7	100	-	-	ļ.,	L.		-					•		-		110	
	Ashvin kumai E Axar Mohammidi Badeinaltan N	2 4 1 7	2017	1317	Kille	150	Path	P1/29/8	de	29/8	MIR	229	ylv	ess	N/10	rela	4/10	22/5	ulva	100	U/ED	
	b 10 1	1911	30/2	10/2	22/8	217	1249	29/8	199	29/8	1919	als	0119	de	dia	Plan	ula	9da	100	2018	4/10	
_	Badeinaltan N	4 4 7	283	418	98	14/9	24/9	29/8	819	23/8	919	20	4/10	-215	4110	2/5	41.	11/0	410	<u>~~//</u>	21/00	The state of the s
	-																					5
1	Balafi Gis 1	418	18/8	147	(17)	417	47	2010	, als	20	10	Ettalo	2.	9.10	do	2.1	.)		_			Ū
20.000	Balayi . S 1		28/8	4-12	13/2	412	10/0	00/10	110	2010	116	241	910	2417	aw,	2119	dro	226	3/10	22/5	3/10	
	Dinesh Raja y	4/8	21.10	4/7	17/2	142	177	2/1	15	33/18	0 7	4/09	4/10	469	4/10	24/09	4/10	1048	4//0	20/5	4/10	
	A COURT OF THE PARTY OF THE PAR	710	24/8	1,10	111	417	11/7	29/2	241	291	THI	2419	8 (3	24/9	010	24/9	8/10	· Als	22/9	249	8/10	
	ΟΛ	-	-						1					- 1		1					-	
2	Dorya. P	15/5	4/10	18/7	1118	#18	11/8	12/5	,Aa	145	ulu	Stee	Alus	1410	2010			(2.0		-		
1	Gomathi N n	1	\\\\\\	t pl -		ula.	mo	λς.	12/2	(1)	1110	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10	117	XXIV	الالم	4110	100	4/10	3	4/10.	
	Common No	183	1/1/	(4)	100	718	10/1	1411	31/4	14/2	Δy)	4/1	24/°	413	10/8	22/9	24/	29/8	de	36	Pszs	
~	Guruffaladh. Tr	202	4/10	18/7	10/8	416.	10/8	3/1	12/2	16/5	4/10	$ \mathcal{N}_{c} $	4/10	419	10/8	22/9	Uha	29/8	4/10	76	Vd.	
	-	, .					'	,		, ,-					-	- 1	7,3	7,0	7/10	9	7/10	
																	-	-				

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, KODAMBAKKAM, CHENNAI-600 024

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE, KODAMBAKKAM, CHENNAI - 600024

(STUDENTS' PRACTICAL WORK)

					, 0.0	DE.111	٠.	10001	ייייי	- "	J	,										
	DEPT. : EEE					SUBJ	ECT	NAME	: E	E6	511	C	on	tio,	1 8	(no	wrt.	nen	tali	ō'n (ab-
Group	Name of Student		(A-A	Atten	ded)			TF	E	XPE	RIME	NT N	0 ,,	- B	u.t					plete		7 –
140		ma	11 .	Ac	2 1	Do	- 3	DC	4	XPE	250	130	6~	7 000	ν7 υ	au	end.	100	dg (× 1	0 Syn	ani
		A	С	A	С	A	C	- A														
1	Jeyawaedham.	2/1	ule	(11)	1236)1)	1 23	12	18 41	90	اتحوا	7 2	25	A P.	15	3 W.	1 25	भा	3 25	7	251°] .
-	Keeithana. S	10-12	4)	11/2	10/2	111	12/	2 -	8 u	19 0	5/1	احرار	2 21	20,00	RI	1/2	18/	2	a du	000	8 wo	
1	Kniehramuetty. Or	1 10	w		24	_	au	N 200	, , , ,	0 2	1266	1 2	Shrk	4.	AXO	1.	1/1/1/		A da lu	100	loda	1
	N. Sarrica Manager	1	141	1	124)	1111	1 019	7	191		10)	<u>`</u>	Zar	1 100	Last	1 1	1411	of	Valu	101) 2001	
- 4	Madhu kumarappar	1795	2-7	3 11/	7 12/1	n/-	7 12]	55	20	9 2	12/	1 24	5 Hlu	2	327)	क्रिक	ali	25/	12	23	र भीत	
	Mahanya ~"	K\3	4/10	n/-	72/5	11)	1/1/8	150	3 41	0 22/	Ralle	Ble	lule	20018	13)5	100	4/1	2517	huli	13)5	412	
	Methur RajiRV	109			1 mg		1 2/3	1 4	24	101	1,1	7 10	111	1-00	1/0	26/4	(0)	25/	Iuls	151	13/10	
	,	1303	1	1		7				1	1 -	1	" "		, , ,			1			1	
1	Muthi Mano ~	11/7	418	25/7	14/8	25/	7 0	J ~ V8	413	1219	1/10	2219	1/1/10	618	410	6/3	410	22/9	410	2060	410	
/	Padma Bhushas L	1117	30/	25/	30/7	25/	7/8	-2/6	पा	Liel	8 8 W	2219	die	53	8/10	515	dio	2269	8/10	2014	80	an
	Parttha ND-	11/7	260	25/	26)2	25/	12	25/8	348	22/5	10019	224	, 110	1	199	25	r/k	200	de	12	-619	57(05)
									١.		'									,	14(1	
/	Poola	11/7	3/0	25/1	16	25/7	75	218	Ula	2	do	22/9	8/10	519	8/10	519	४१७	12/2	क्षां	35	8/10	
	Rahul-M	083	914	25/7	1018	25/7	101	513	9/10	MS	9/4	289	9110	411	25/8	2 /20	alw	248	44	22	9/0	
1	Rahul:s 1				20/2																	
		1,1,1	7,00	.,	-	.,,	(2.7)		LIM	m	1100	V- 1.	7100	. 4	1110	~	714	,,,,,	-1100	1 15) ***	
	D 0.	1			``	201	10	λ α		10				,		^^	_	1	,	15/	-	
	Ray Surya. R	AG	12110	25/7	123/8	25/7	13/6	SYT	171 kg	201	110	πħ	15/10	lip-	25/8	14/2/	5/10	2/8	uls	1860,	17/1g	
1	Raj Sulya. R Ramya. M N	084		25/7	25/2	25/7	१ ई नि	35	2/6	2/2	22/9	22/9	18/2	11/29	1/8	16/2	18/9	2/8	MA	12/2	28/9	
	ı	- ',	- ' ' '																41			
													_	_		+	+	_	_	-		

TEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE
363, ARCOT ROAD, KODAMBAKKAM,
CHENNAI-600 024

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE, KODAMBAKRAM, CHENNAI - 600024

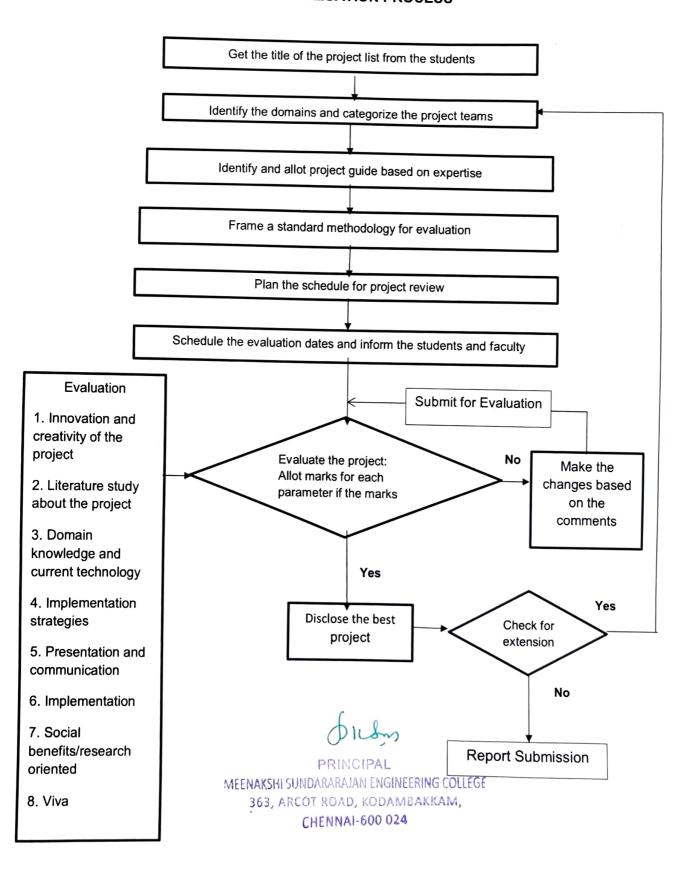
(STUDENTS' PRACTICAL WORK)

DEPT. : EEE SUBJEC	NAME: EF651) Control	& Instrumentation las
--------------------	----------------------	-----------------------

Group	Name of Student		(A-At	tende	ed)			- A	EXF	ERIN	MENT	NO.						C-C	ompl	eted)	_	
No		1		_	2 AC	3	PC			5	, M	6		•	160	8	-	9	e	10	C	
		A	С	Α	С	A	С	A	С	Α	С	A	С	A	С	A	C	A	C			
/	Vanitha. V	1/8	419	212	918	214	918	15/9	16/19	13/8	417	3219	1910	717	419	219	2/10	53/18	419	22/18		
1	Varalake hour G			21/2	12/8	21/2	4/18	16/9	1/10	15/Q	1/1/0	2219	1/10	7/2	2/8	2219	6/10	53/8	21/2	3318		
y 6	Venkat Anamilia V	11/8	29/8	21/2	10/8	21/2	10/8	1519	10	150	Islu	2217	\vdash	7/2	BOOK	2219	Pd	23/18	69	278	619	
		2			,		Ĺ.		, ,											-70		
-	Vignesh	22/8		21/2		21/7		ris		2245		The		717					_	22/5		
	Vinith Raja	27/8	115	2157		215)		22/5		272		de		7/7					-	- /		
	Vishwanath	27/8	125	48/7		417		242		2/5		M		7/7			_			2/1		
		_			-	'			-	-70	4.	21	10	701	-110	210	مدر	72/9	1910	249	15/10-	a
	Yuva Chandra Kumai	717	15/4	4)7	7/8	717	15le	245	1510	07/2	1818	70	1514	20/10	15140	200	LSTIC					3703
/	Ranjith ~	29/8	15/0	TH	717	717	21/7		12/0	041		24/			12/			2969		-	/(4	0.0.
/		3/18	1815	713	117	717	21/3	18/9	8/19		8/10				37/1	-	1			224		-
1	Sangertha	3/00	202	777	7/7	717	27/2	191	8/10	124	Slu	16	- Sw	11/5	32/8	34/6	St	0 🗯	5 36	35/	8/10	4
	300 9 60,000	110	-1-4,						10		'		,	1	_			ļ.,	1	١.	—	
/	Sast Kumas 7	11/8	3/9	717	68	7/7	6/8	16/5	4/V	16/6	4/1	27	NW	30/8	WW	27/8	: 4	WY	3/11	0 27	1 4/1	0
1	Vivek 5	11/8	318	717	6 8	1-	68	2/21	9/10	1611	9/1	\$ 23	696	2/8	91 w	27/8	19/1	0	5 94	0 276	9/4	2 .
		11/8	1,20	717	11/8		11/8		VII		ul!	24	1/1	30)		27/8		W VI	2	3 . 2	91/13	-
			2010		,		1					22	de	21	+ ++				401	-	7.15	
/	Swother V	11/18	29/8	717	a of	718	10/8	1/2	dp	20	ap	-	, Ma	73/	15/10	SICE	4		70(1	19 31	1	1
				1	,	1											\perp	_	-	-	-	
																	1	_		-	-	
														1								
						1			-	_	-				1							

PRINCIPAL

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, KODAMBAKKAM, CHENNAI-600 024


MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE, KODAMBAKKAM, CHENNAI - 600024

(STUDENTS' PRACTICAL WORK)

	5555				, •	ODL						,										
	DEPT. : EEE					SUB	JECT	NAME	: E	E E 6	511	C	ont	tro	8,	۸,	ہل	(<u>.</u>		tatio	1	1
Group No	Name of Student		(/	A-Atte	ended)				No.	EVDE		NT N			1		13(1					<i>ab</i>
			1		2	4C	3 6		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		P 5	NIN	<u> </u>	_	754	_) Park	(C-		plete		
	0	A			A C	A		_	_	_	C	A	c	A	c	Α.	8 C	-	9 0	_	0 5	
/	Kamyalakshni s	1 28	12/2	0/8	14/7 1	12/1								150	1 2	11/2	-1	a . \	10	A No	5)10	
/	Rebin D				47 27		V2 1	8 1	A 10	1.	41.0	10 11	1 5/10	211	NE	172	PI	MA	7 10	19 101	5/10	
/	Sardhya Mohan	of de	31	0/8			17 27	33/	1129	10/18	5 10)	9 20	170	100	13/13	1.5	13/1	9 11	7 28	5/2	13/10	
	1	AS AS	1	0,0	411 9.	1/2/14	17 di	110	M	12/18	N Soci	>160	30	301	\$20\Q	110	124	Shits	14	n/º	124)	
/	lanjana V	28/		12	0 0	1.		+	+	-	+-		+	_	<u> </u>	_		<u> </u>	3/	4		
	Can Com lan man	- 1		1.	# 27	1	17 27	7/119	10	9 148	21/9	1220	1341	20)	2018	1/2	16	air		1/9	2417	
7	Canjay luman	7 28/			1/0		0/1/0)	13	m/10	13	ub	13/	22)	4 1/0		130	Anh	110	5	ito	
-	Cankberto 5	188	2 6	1/4	17 27	7/14	1)27	18/8	1 6	1/1/6	14	P22/9	ulo	27/1	6 4TW	22/9	u	11/3	14	7 110	WID	
-	1. +1.	100	+	_	-	1	1	1	- 1					1		1	Ι.			, ,		
- + '	Canthosh 1	48010	211	111	7 11)	8 98	7 11 8	18119	22	1022/	12/	10 72	12/10	27	119	14	121		118	9 92/	3 121w-	
/ -	Pasivelcha I	88/F	18/0	18/11	7 141	7 281	1 311:	1019	M	3 36/	a u 1	Pénr (110	1/00	2/6	19	1211	المحا		1.10	4/10	(A)
	chwetha v	2181B	Na	111	7 7/8	201-	1110	01/0	1	145	/ - /-	2014	4/m	211	2119	6,7,	ugv	bulk	या	17 204	1 411	07/09
		4	1,	1	713	2 001	11118	0119	149	1221	7/4/1	0 000	4/10	211	112	11/2	ψı	9417	14	8 1	1 40	0 3/10)
7	Du	7. 1-	1-1	+	1	+,	1	-	-	-	_											1
\rightarrow	Prasama Kushnan	/14n	271	1/14	127	141	1371	249	13/10	019	13/10	22/4	13/w	11/3	2018	18/8	130	s 28	7 28	\$ 221	8 13/10	,
	Charry 40 -1-1	14/	(D) (C)	12. IL	1117	1211	0 1112	1249	WILL	UHA	11711	1001	1911	وادا	100	+w\ P	1119	190/	700	16 -	1 1 1	1
1	ir Ratchanya. Ty	14/7/	27/	191	4111	24	11/8	22/9	ode	nila	25	1/5	10	hla		علم	1/2	1206	119	1 -\c	1 2/5	1
		1		1	111/	+	++	- //	1471	JOH	72	1/	191)	11/9	. Octo	IRI	501	5 28/	7 +	1831/	13/	
1		-	10	_	-	-	-			ļ	-	_										
7	Ultrana Parneir?	14/7/	33/	27/6	11/7	27/6	11/11	x) a	4110	anla	4/10	Dala	4/10	v h	ada	ula	16	201	1	Coala	ve la	
(2		48	1			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2		DE LA	-	-		1111	'n k	10	T	- 01	ופבי	9947	7 12	
	Purindian /	MIL	24	216	12/7	21/6	27	(4)	14114	000	1411	1226	NI ICO	11/7	30/R	249	14/10	20)	30	9219	14)10	
1	hornavulckovasú a	17/2	5/8	27/6	7	27/6	17/73	29	1/10	0015	12/10) 2×19	4/4	417	225/	49	4/19	RIDE	rels	2/24	4/10	
								, ,	(1	00	(,		1				•	0-10	- 1/	100		
												-	-		-	-	-					
								- 1	- 1		- 1	- 1	- 1		- 1	- 1	- 1	- 1		1 1		

TEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, KODAMBAKKAM, CHENNAI-600 024

PROJECT IDENTIFICATION, ALLOTMENT MONITORING AND EVALUATION PROCESS

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE **DEPARTMENT OF EEE PROJECT REVIEW**

NAME: Arul selvan, Surendran, Logesh

TITLE: Driver fatigue detection and accident prevention using eye blink sensor

EXTERNAL GUIDE: Gayatri. G1

EXTERNAL GUIDE: Prabhakar

COMPANY/INDUSTRY NAME: Shinivas a Engineery Projects, PVT. LTD

REVIEW	DATE	REMARKS	PROGRESS EXPECTED	INTERNAL GUIDE SIGN
Zeroth Review	2/1/18	Title finalind	Block dragan Explanation to begiven	G-Carpet
First Review	19/1/18	Block diagram to he changed	IR Sinsorlompled nouting to hegiven	6. Carpet
Second Review	3/2/17	Olio Coding ogsven	Detailed Explanation of Coding to properly . gp	G-Carpat
Third Review	1/3/17	O/p-shand rome— Photos & Norking Video Shows	Report to begiven properly	G. Cay

PRINCIPAL

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, KODAMBAKKAM,

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE DEPARTMENT OF EEE PROJECT REVIEW

NAME: HARMIND KUMAR K.M 2. ARUN KUMAR R 3. VIKRAMAN B.

TITLE : GENERATOR CONTROL USING WEB SERVER SYSTEM

INTERNAL GUIDE : HARITHA

EXTERNAL GUIDE : B. VINAYAGAM (ASSISTANT ENGINEER C&I)

COMPANY/INDUSTRY NAME: NORTH CHENNAL THERMAL POWER STATION STAGE-II

712/17 July	Redo Block Diagram to be changed	Defoiled Explanations of Circuit Diagram.	400
pris		Defailed Explanations of Circuit Diagram	460
	Ü		
12118	Coding partially done	Shulation veed improvement.	-116 5
13/18	Explained Coding.	Report and model	₩æ
			C 22/2 C 1 1 1 1

PRINCIPAL
MEENAKSHI SUNDARARAJAN ENGINEERIN HODEGE
363, ARCOT ROAD, KODAMBAKKAM,
CHENNAI-600 024

		December 2019	
Date	Days	Particulars	
1	Sunday	Holiday	
2	Monday		
3	Tuesday		
4	Wednesday		
5	Thursday		+
6	Friday		
7	Saturday		
8	Sunday	Holiday	
9	Monday		
10	Tuesday		
11	Wednesday		
12	Thursday	College Reopening II,IV,VI,VIII Semester	
1 3	Friday	g separate and a sepa	
14	Saturday	F 38	
15	Sunday	Holiday	
16	Monday		
17	Tuesday		
18	Wednesday		_
19	Thursday	i e y	
20	Friday	A CONTRACTOR OF THE STATE OF TH	+
21	Saturday	t	
22	Sunday	Holiday	
23	Monday		
24	Tuesday		
25	Wednesday	Holiday- Christmas	
26	Thursday	- The state of the	+
27	Friday		
28	Saturday		-
29	Sunday	Holiday	
	Monday	Honday	
	Tuesday		

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, KODAMBAKKAM, CHENNAI-600 024

		January - 2020	
Date	Days	Event	
1	Wednesday	Holiday - New Year	
2	Thursday		
3	Friday		
4	Saturday		
5	Sunday	Holiday	
6	Monday		
7	Tuesday		
8	Wednesday		
9	Thursday		
10	Friday		
11	Saturday		
12	Sunday	Holiday	
13	Monday		
14	Tuesday		
15	Wednesday	Holiday- Pongal	
16	Thursday	Thiruvalluvar Day	
17	Friday		
18	Saturday		
19	Sunday	Holiday	
20	Monday		
21	Tuesday		
22	Wednesday		
23	Thursday		
24	Friday		
25	Saturday		
26	Sunday	Holiday - Republic Day	
27	Monday		
28	Tuesday		
29	Wednesday	LATE A HAVE A DOWN ATT A DOWN ATT A TO	
30	Thursday	IAT 1 - II YEAR/III YEAR/IV YEAR	
31	Friday	IAT 1 - II YEAR/III YEAR/IV YEAR	

Out

PRINCIPAL
MEENAKSHI SUNDARANAJAN ENGINEERING COLLEGE
363, ARCOT ROAD, KODAMBAKKAM,
CHENNAI-600 024

		February - 2020	
Date	Days	Event	
1	Saturday	IAT 1 - II YEAR/III YEAR/IV YEAR	
2	Sunday	Holiday	
3	Monday	IAT 1 - II YEAR/III YEAR/IV YEAR	
4	Tuesday	IAT 1 - II YEAR/III YEAR	
5	Wednesday	IAT 1 - II YEAR/III YEAR	
6	Thursday		
7	Friday		
8	Saturday		
9	Sunday	Holiday	
10	Monday		
11	Tuesday		
12	Wednesday		
13	Thursday		
14	Friday		
15	Saturday		
16	Sunday	Holiday	
17	Monday		
18	Tuesday		
19	Wednesday		
20	Thursday		
21	Friday		
22	Saturday		
23	Sunday	Holiday	
24	Monday		
25	Tuesday		
26	Wednesday		
27	Thursday		
28	Friday		
29	Saturday		

Digital

PRINCIPAL
MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE
363, ARCOT ROAD, KODAMBAKKAM,
CHENNAI-600 024

March - 2020			
Date	Days	Event	
1	Sunday	Holiday	
2	Monday		
3	Tuesday	IAT2-II YEAR/III YEAR	
4	Wednesday	IAT2-II YEAR/III YEAR	
5	Thursday	IAT2-II YEAR/III YEAR/IV YEAR	
6	Friday	IAT2-IV YEAR	
7	Saturday		
8	Sunday	Holiday	
9	Monday		
10	Tuesday	IAT3-II YEAR/III YEAR	
11	Wednesday	IAT3-II YEAR/III YEAR	
12	Thursday	IAT3-II YEAR/III YEAR/IV YEAR	
13	Friday	IAT3-IV YEAR	
	Saturday	MITO IV I	
14 15	Sunday	Holiday	
16	Monday		
17	Tuesday		
18	Wednesday		
19	Thursday		
20	Friday		
21	Saturday		
22	Sunday	Holiday	
23	Monday	Model Exam - II YEAR/III YEAR	
24	Tuesday	Model Exam - II YEAR/III YEAR	
25	Wednesday	Model Exam - II YEAR/III YEAR	
26	Thursday	Model Exam - II YEAR/III YEAR/IV YEAR	
27	Friday	Model Exam - II YEAR/III YEAR/IV YEAR	
28	Saturday	Model Exam - II YEAR/III YEAR/IV YEAR Holiday	
29	Sunday		
30	Monday	Model Exam - IV YEAR	
31	Tuesday		

Som

PRINCIPAL
MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE
363, ARCOT ROAD, KODAMBAKKAM
CHENNAL-600-024

		April - 2020	
Date	Days	Event	
1	Wednesday		
2	Thursday		
3	Friday		
4	Saturday		
5	Sunday	Holiday	
6	Monday		
7	Tuesday		-
8	Wednesday		
9	Thursday		
10	Friday	Good Friday - Holiday	
11	Saturday		
12	Sunday	Holiday	
13	Monday		
14	Tuesday	Tamil New Year - Holiday	
15	Wednesday		-
16	Thursday	9	-
17	Friday		
18	Saturday		
19	Sunday	Holiday	
20	Monday		
21	Tuesday		
22	Wednesday		
23	Thursday		
24	Friday		
25	Saturday	H.P.A.	
26	Sunday	Holiday	
27	Monday		
28	Tuesday		
29	Wednesday		
30	Thursday		

PRINCIPAL MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, KODAMBAKKAM, CHENNAI-600 024

		May - 2020	
Date	Days	Event	
1	Friday	Holiday - May Day	
2	Saturday		
3	Sunday	Holiday	
4	Monday	·	
5	Tuesday	Holiday	
6	Wednesday		
7	Thursday		
8	Friday		
9	Saturday		
10	Sunday	Holiday	
11	Monday		
12	Tuesday		
13	Wednesday		
14	Thursday		
15	Friday		
16	Saturday		
17	Sunday	Holiday	
18	Monday		
19	Tuesday		
20	Wednesday		
21	Thursday		
22	Friday		
23	Saturday	Unlide:	
24	Sunday	Holiday	
25	Monday		
26	Tuesday		
27	Wednesday		
28	Thursday		
29	Friday		
30	Saturday	Holiday	
31	Sunday	Holiudy	

PRINCE

PRINCIPAL
MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE
363, ARCOT ROAD, KODAMBAKKAM,
CHENNAI-600 024

SUBJECT : EC8451 - ELECTROMAGNETIC FIELDS

SEM / YEAR : IV/II

UNIT I INTRODUCTION

Electromagnetic model, Units and constants, Review of vector algebra, Rectangular, cylindrical and spherical coordinate systems, Line, surface and volume integrals, Gradient of a scalar field, Divergence of a vector field, Divergence theorem, Curl of a vector field, Stoke's theorem, Null identities, Helmholtz's theorem

PA	RT	-	A
----	----	---	---

Q.No	Questions	BT Level	Competence
1.	List the source quantities in the electromagnetic model.	BTL 1	Remembering
	Describe line, surface and volume charge density.	BTL 2	Understanding
3.	State divergence theorem.	BTL 1	Remembering
4.	Define Stokes theorem.	BTL 1	Remembering
5.	Name the universal constants in the electromagnetic model.	BTL 1	Remembering
6.	What are surface and volume integrals?	BTL 1	Remembering
7.	Give the relationship between potential and electric field intensity.	BTL 2	Understanding
8	Identify the unit vector and its magnitude corresponding to the given vector $A=5$ $\hat{a}x + \hat{a}y + 3$ $\hat{a}z$.	BTL 3	Applying
9.	Estimate the distance between the given vectors $\mathbf{A}(1, 2, 3)$ and $\mathbf{B}(2, 1, 2)$.	BTL 6	Creating
1	Outline the relationship between magnetic flux density and field density.	BTL 2	Understanding
11.	Calculate the values of universal constants of free space.	BTL 5	Evaluating
12.	Analyze a differential volume element in spherical coordinates (r, θ, ϕ) resulting from differential charges in the orthogonal coordinate systems.	BTL 4	Analyzing
13.	Specify the unit vector extending from the origin towards the point $G(2,-2,-1)$.	BTL 3	Applying
14.	Compare orthogonal and non-orthogonal coordinate systems.	BTL 4	Analyzing
15.	Point out the role of vector algebra in electromagnetics.	BTL 2	Understanding

EC8451 EMF_Qbank_2019-20 (Even)

2

	borical coordinates.	BTL 4	Analyzing
6.	Convert the point P (5, 1, 3) from Cartesian to spherical coordinates.	BTL 1	Remembering
7.	Write the transformation between spherical and Cartesian coordinates.	BTL 3	Applying
18.	Justify that electric field is conservative. Obtain the value of α if magnetic field ${\bf B}$ is a solenoid where	BTL 6	Creating
19.	D=25va+12vav+ a Zaz.	BTL 5	Evaluating
20.	Assess the physical significance of curl of a vector field.		
1.	PART - B What is alcotromagnetics? Give detailed explanation on Electromagnetic (13)	BTL 1	Remembering
2.	(i) Verify whether the vector field $\mathbf{E} = yz \hat{\mathbf{a}}_x + xz \hat{\mathbf{a}}_y + xy \hat{\mathbf{a}}_z$ is both solenoidal and irrotational. (ii) Given $\mathbf{A} = 5\hat{\mathbf{a}}_x$ and $\mathbf{B} = 4 \hat{\mathbf{a}}_y + t \hat{\mathbf{a}}_y$. Find t such that angle between \mathbf{A} and	BTL 1	Remembering
3.	B is 45°. (4) (i) Write short notes on scalar and vector field. (4) (ii) What is unit vector? Discuss on the mathematical operations with (9)	BTL 1	Remembering
4/	Vectors. Explain how a spherical coordinate system describes the position of the point in free space and its differential elements. (13)	BTL 1	Remembering
5/.	(i) Summarize about the Dot product and cross product of vectors. State its properties and applications. (7) (ii) The three fields are given by $\mathbf{A} = 2$ $\mathbf{\hat{a}_x} - \mathbf{\hat{a}_z}$, $\mathbf{B} = 2$ $\mathbf{\hat{a}_x} - \mathbf{\hat{a}_z}$ $\mathbf{y} + 2\mathbf{\hat{a}_z}$ and $\mathbf{C} = 2\mathbf{\hat{a}_x} - 3\mathbf{\hat{a}_y} + \mathbf{\hat{a}_z}$. Find the scalar and vector triple product. (6)	BTL 2	Understanding
6.	Obtain the expressions for differential area and volume element in cylindrical coordinate system. (13)	BTL 2	Understanding
7.	Analyze the geometrical position of the point in Cartesian coordinate system and obtain distance vector and differential elements. (13)	BTL 4	Analyzing
8.	Asses the spherical coordinates of A and Cartesian coordinates of B for the two given points $\mathbf{A}(\mathbf{x} = 2, \mathbf{y} = 1, \mathbf{z} = 3)$ and $\mathbf{B}(\rho = 1, \phi = 45^0, \mathbf{z} = 2)$ (13)	BTL 3	Applying
9.	Given the two points \mathbf{A} (x = 2, y = 3, z = -1) and \mathbf{B} (r=4, θ =25°, φ =120°). Solve the spherical coordinates of \mathbf{A} and Cartesian coordinates of \mathbf{B} . (13)	BTL 3	Applying
10.	State and prove divergence theorem for a given differential volume element. (13)	BTL 2	Understanding
11.	Verify divergence theorem for the vector $\mathbf{A} = 4x \mathbf{\hat{a}} x - 2y^2 \mathbf{\hat{a}} y + z^2 \mathbf{\hat{a}} z$ taken over the cube bounded between $x=0, x=1, y=0, y=1$ and $z=0, z=1$. (13)	BTL 4	Analyzing
12.	(i)Explain in detail line, surface and volume integral of vector function.(7) (ii)Express the rate of change of a scalar in a given direction in terms of its gradient and its properties. (6)	BTL 4	Analyzing
13.	(i) Verify the null identities using general orthogonal coordinates. (7) (ii) How do you explain the use of Helmholtz's theorem in electromagnetic engineering? (6)	BTL 5	Evaluating

PRINCIPAL EC8451 EMF_Qbank_2019-20 (Even)
MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE

(i) Elaborate on curl of a vector and its significance. (7)	BTL 6	Creating
C		
	DTI 6	Evaluating
Evaluate divergence theorem for the given $\mathbf{D} = 2r z^{2} \hat{\mathbf{a}}_{r} + r \cos^{2} \phi \hat{\mathbf{a}}_{z}$, where $r = 3$ and $z = 5$. (15)		
Express vector B in Cartesian and cylindrical systems .Given $\mathbf{B} = 10/r \hat{\mathbf{a}} \mathbf{r} + r \cos\theta \hat{\mathbf{a}}_{\theta} + \hat{\mathbf{a}} \boldsymbol{\varphi}$, Then find B at (-3,4,0) and (5, π /2,-2) (15)	BTL 5	Evaluating
Validate stokes theorem for a vector field $\mathbf{A} = 2\mathbf{r} \cos \varphi \mathbf{a} \mathbf{r} + \mathbf{r}$ and $\mathbf{a} \mathbf{\phi}$ in cylindrical coordinates for the contour shown in figure below.	BTL 6	Creating
$\frac{b}{a}$		
Estimate \iint F.n dsusing divergence theorem where $\mathbf{F} = 2 \text{ xy } \hat{\mathbf{a}}_{x} + \mathbf{y}^{2} \hat{\mathbf{a}}_{y} + 4 \text{ yz } \hat{\mathbf{a}}_{z}$, surface of the cube bounded by $\mathbf{x} = 0, \mathbf{x} = 1, \mathbf{y} = 0$, $\mathbf{y} = 1$ and $\mathbf{z} = 0, \mathbf{z} = 1$.	BTL 6	Creating
	(ii) State and prove Stokes theorem to relate line integral and surface integral - C Evaluate divergence theorem for the given D= 2r z² âr + r cos² φ âz, where r = 3 and z=5. (15) Express vector B in Cartesian and cylindrical systems .Given B= 10/r âr + r cosθ âθ + âφ, Then find B at (-3,4,0) and (5,π/2,-2) (15) Validate stokes theorem for a vector field A = 2r cosφ ar̄ + r âφ in cylindrical coordinates for the contour shown in figure below. (15) Estimate ∫ F.n dsusing divergence theorem where F= 2 xy âx + y² ây + 4 yz âz, surface of the cube bounded by x=0,x=1, y=0 (15)	(ii) State and prove Stokes theorem to relate line integral and surface integral (6) - C Evaluate divergence theorem for the given D= 2r z² âr + r cos² φ âz, where r=3 and z=5. (15) Express vector B in Cartesian and cylindrical systems .Given B= 10/r âr + r cosθ âθ + âφ, Then find B at (-3,4,0) and (5,π/2,-2) (15) Validate stokes theorem for a vector field A = 2r cosφ ar + r aφ in cylindrical coordinates for the contour shown in figure below. (15) BTL 5 Estimate ∫∫ F.n dsusing divergence theorem where F= 2 xy âx + y² ây + 4 yz âz, surface of the cube bounded by x=0,x=1, y=0

UNIT II ELECTROSTATISTICS

Electric field, Coulomb's law, Gauss's law and applications, Electric potential, Conductors in static electric field, Dielectrics in static electric field, Electric flux density and dielectric constant, Boundary conditions, Capacitance, Parallel, cylindrical and spherical capacitors, Electrostatic energy, Poisson's and Laplace's equations, Uniqueness of electrostatic solutions, Current density and Ohm's law, Electromotive force and Kirchhoff's voltage law, Equation of continuity and Kirchhoff's current law

PART - A

Q.No	Questions	BT Level	Competence
1	Define electric field intensity.	BTL 1	Remembering
2.	Write the statement of Coulomb's law.	BTL 1	Remembering
3.	What is the difference between potential and potential difference?	BTL 1	Remembering
4.	Mention the two sources of electromagnetic fields.	BTL 1	Remembering
5.	Describe the relationship between electric field intensity and electric flux density.	BTL 1	Remembering
6.	State Gauss law.	BTL 2	Understanding
7.	Calculate the values of \mathbf{D} at a distance $r = 5m$ for the uniformly charged sphere of radius 2m with charge density of 20 nC/m ³ .	BTL 3	Applying
8.	Give examples for uniform and non-uniform electric fields.	BTL 2	Understanding
9.	Explain the principle of Superposition as applied to an electric potential of a point.	BTL 2	Understanding

1 1	List the properties of conductor and the		
11.	List the properties of conductor and dielectric materials. Describe about capacitance and capacitors.	BTL 1	Remembering
12.	Solve the energy stored in a 10 µF capacitor which has been charged to a How do you find the	BTL 2	Understandin
13.	How do you find the equivalent capacitance of two capacitors C ₁ and C ₂ Obtain the relationship of Capacitor which has been charged to a	BTL 3	Applying
14.	Obtain the relation between current and current density.	BTL 3	Applying
15.	Identify equation of Ohm's law in point form.	BTL 4	Analyzing
16.	Compare Poisson's and Laplace's equation	BTL 4	Analyzing
17.	Evaluate the unique solution of electrostatic fields	BTL 4	Analyzing
18.	Calculate the value of	BTL 5	Evaluating
	pF/m. proced in a fiduld whose pF/m.	BTL 5	Evaluating
19.	Formulate the current density of copper wire having conductivity of 5.8 *10'	BTL 6	Creating
20.	Derive the continuity equation in integral and differential form.		
		BTL 6	Creating
	PART - B		
1.	Q1 and Q2 are the point charges leasts 1, 10		
	Q1 and Q2 are the point charges located at (0,-4, 3) and (0, 1, 1). If Q1 is 2 nC, Find Q2 such that the force on test charge at (0,-3, 4) has no z component.	BTL 1	Remembering
	(12)		1
2.	(i)State and explain coulomb's law and data.		
2.	equation between the two points.	BTL 1	Remembering
3.	equation between the two point charges. (ii) Write note on principle of Superposition as applied to charge (if) State and explain coulomb's law and deduce the vector form of force (iii) Write note on principle of Superposition as applied to charge	BTL 1	Rememberin
3.	(i) Write note on principle of Superposition as applied to charge Obtain the formula for the electric field intensity of an infinite long straight line carrying uniform line charge density of OL	BTL 1	Remembering Analyzin;
	(i) Write note on principle of Superposition as applied to charge Obtain the formula for the electric field intensity of an infinite long straight line carrying uniform line charge density of ρ _L (i) State and prove Gauss law.		Analyzin _ξ
3.	(i) Write note on principle of Superposition as applied to charge (ii) Write note on principle of Superposition as applied to charge (iii) Write note on principle of Superposition as applied to charge (ii) Obtain the formula for the electric field intensity of an infinite long straight line carrying uniform line charge density of ρ _L (ii) State and prove Gauss law. (iii) Obtain the point form of gauss law. (7) (6) Explain about any two applications of Gauss laws it.	BTL 4	Analyzin _ξ Remembering
3.	(i) Write note on principle of Superposition as applied to charge distribution. (ii) Write note on principle of Superposition as applied to charge distribution. Obtain the formula for the electric field intensity of an infinite long straight line carrying uniform line charge density of ρ _L (13) (i) State and prove Gauss law. (7) (ii) Obtain the point form of gauss law. (6) Explain about any two applications of Gauss law with neat diagrams. (13) Derive the expression for potential due to an electric line.	BTL 4 BTL 1	Analyzing Remembering Understandin
 3. 4. 5. 	(i) Write note on principle of Superposition as applied to charge distribution. (ii) Write note on principle of Superposition as applied to charge distribution. Obtain the formula for the electric field intensity of an infinite long straight line carrying uniform line charge density of pt. (13) (i) State and prove Gauss law. (7) (ii) Obtain the point form of gauss law. (6) Explain about any two applications of Gauss law with neat diagrams. (13) Derive the expression for potential due to an electric dipole at any point P. Also find the electric field intensity and in terms of directors.	BTL 4	Remembering Analyzing Remembering Understandin Understandin
3.4.5.6.	(i) Write note on principle of Superposition as applied to charge (ii) Write note on principle of Superposition as applied to charge distribution. Obtain the formula for the electric field intensity of an infinite long straight line carrying uniform line charge density of ρι. (i) State and prove Gauss law. (ii) Obtain the point form of gauss law. (iii) Obtain the point form of gauss law with neat diagrams. (13) Derive the expression for potential due to an electric dipole at any point P. Also find the electric field intensity and in terms of dipole moment. (i) Analyze about nature of dielectric material and polarization. (ii) Determine the value of polarization and electric field intensity of homogeneous slab of lossless dielectric with electric susceptibility of 0.12 and electric flux density of 1.6 nC/m ²	BTL 4 BTL 1	Analyzing Remembering Understandin
3.4.5.6.	(i) Write note on principle of Superposition as applied to charge distribution. (ii) Write note on principle of Superposition as applied to charge distribution. Obtain the formula for the electric field intensity of an infinite long straight line carrying uniform line charge density of ρ _L (13) (i) State and prove Gauss law. (7) (ii) Obtain the point form of gauss law. (7) Explain about any two applications of Gauss law with neat diagrams. (13) Derive the expression for potential due to an electric dipole at any point P. Also find the electric field intensity and in terms of dipole moment. (13) (i) Analyze about nature of dielectric material and polarization. (7)	BTL 4 BTL 1 BTL 2 BTL 2	Analyzing Remembering Understandin Understandin

PRINCIPEC8451 EMF_Qbank_2019-20 (Even)

10.	Formulate the expression for electrostatic energy required to assemble a group of charges at rest.	BTL 3	Applying
11.	Derive the boundary conditions between conductor and dielectrics from the boundary conditions between conductor and free space. (13)	BTL 6	Creating
12.	(i) Write the equation of continuity in integral and differential form. (7) (ii) Discuss the point form of ohm's law and obtain the expression for resistance of a conductor. (6)	BTL 1	Remembering
13.	A cylindrical capacitor consists of an inner conductor of radius 'a' & an outer conductor whose inner radius is 'b'. The space between the conductors is filled with a dielectric permittivity E _r & length of the capacitor is L. Estimate the value of the Capacitance. (13)	BTL 4	Analyzing
14.	Evaluate the expression for a parallel plate capacitor. Also derive the equation for composite parallel plate capacitor with dielectric boundary parallel and normal to the plates. (13)	BTL 5	Evaluating
	PART - C		
1.	Determine the expression for the electric field due to a charge circular ring of radius r placed in xy plane with center at origin having charge density of ρL C/m. Find E at the point (0, 0, 5) m from the circular ring of charge with radius 5 m lying in z = 0 plane with center at origin and having $\rho L = 10$ nC/m. (15)	BTL 5	Evaluating
2.	(i) Derive the equation of potential due to point, line, and surface and volume charge and obtain the relation between E and V . (8) (ii) Given the potential $V = (10 \sin \theta \cos \phi) / r^2$. Find the electric flux density at $(2, \pi/2, 0)$. (7)	BTL 5	Evaluating
3.	Obtain at point P the magnitudes of V, E, Et, En, D, Dn and ρ S of a potential field V= 100 e ^{-5x} sin 3y cos4z volts. Let point P (0.1, π /12, π /24) be located at a conductor free space boundary. (15)	BTL 6	Creating
4.	 (i) Determine the capacitance of general spherical capacitor, isolated sphere coated with dielectric. (10) (ii) For a conducting sphere of 2 cm in diameter, covered with a layer of polyethylene with ε_r = 2.26 and 3 cm thick, find the capacitance. (5) 		Creating

UNIT III MAGNETOSTATICS

Lorentz force equation, Law of no magnetic monopoles, Ampere's law, Vector magnetic potential, Biot-Savart law and applications, Magnetic field intensity and idea of relative permeability, Magnetic circuits, Behaviour of magnetic materials, Boundary conditions, Inductance and inductors, Magnetic energy, Magnetic forces and torques

PART - A

Q.No	Questions	BT	Competence
1.	Define magnetic field and magnetic lines of force.	BTL 1	Remembering
2.	State Biot-Savart's law.	BTL 1	Remembering

EC8451 EMF_Qbank_2019-20 (Even) MERNAKSHI SUNDARARAMAN ENGINEERING CO

3.	Describe Ampere's circuital law.	BTL 1	Remembering
4.	What is scalar magnetic potential?	BTL 1	Remembering
5.	Write about magnetic flux and flux density.	BTL 1	Remembering
6.	List the applications of Ampere's circuital law.	BTL 1	Remembering
7.	Point out the relation between magnetic flux density and magnetic field intensity.	BTL 2	Understanding
8.	Outline the concept of permeability and its unit.	BTL 2	Understanding
9.	Infer the Lorentz force equation for a moving charge?	BTL 2	Understanding
10.	Explain magnetic moment.	BTL 2	Understanding
11.	Identify the relationship between magnetic field intensity and magnetization.	BTL 3	Applying
12.	Classify the different types of magnetic materials.	BTL 3	Applying
13.	Derive the expression of force between two current elements.	BTL 3	Applying
14.	Express the self and mutual inductance.	BTL 4	Analyzing
15.	Examine the expression of energy stored in an inductor.	BTL 4	Analyzing
16.	Analyze the mutual inductance of two inductively tightly coupled coils with self-inductance of 25mH and 100mH.	BTL 4	Analyzing
17.	Find the energy stored in inductor having current of 3A flowing through the inductor of 100mH.	BTL 5	Evaluating
18.	Compute torque where magnetic field is $\mathbf{B}=0.2\hat{\mathbf{a}}_x+0.4\hat{\mathbf{a}}_z\mathrm{Wb/m}^2$ and magnetic dipole moment is $\mathbf{M}=8*10^{-3}\hat{\mathbf{a}}_z\mathrm{Am}^2$.	BTL 5	Evaluating
19.	Explain the phenomenon of hysteresis with reference to ferromagnetic materials.	BTL 6	Creating
20.	Obtain the energy stored in a magnetic field in terms of field quantities.	BTL 6	Creating
	PART – B		-
1.	From the Biot-Savart's law, write the expression for magnetic field intensity at a point P and distance R from the infinitely long straight current carrying conductor. (13)	BTL 1	Remembering
2.	Derive the equations for magnetic field intensity and magnetic flux density at the center of the square current loop using Biot-Savart's law. (13)	BTL 1	Remembering
3.	Write short notes on (i)Magnetic field due to current carrying conductors. (ii)Law of non-magnetic monopoles. (7) (6)	BTL 1	Remembering
4.	State about magnetization? Describe the classification of magnetic materials with examples. (13)	BTL 1	Remembering
5.	Determine the magnetic field intensity at the origin due to current element $\mathbf{Idl} = 3\pi \left(\hat{\mathbf{a}}_x + 2 \hat{\mathbf{a}}_y + 3\hat{\mathbf{a}}_z \right) \mu \mathbf{A} \cdot \mathbf{m}$ at $(3,4,5)$ m in free space. (13)	BTL 5	Evaluating
6.	(i) Discuss about the force on a straight and long current carrying conductor placed in the uniform magnetic field. (7) (ii)Illustrate with diagram magnetic torque. (6)	BTL 2	Understanding

7.	(i) Using Biot-Savart's law, illustrate the magnetic field intensity on the axis of a circular loop of radius R carrying a steady surrent I	BTL 2	77-1
	of a circular loop of radius R carrying a steady current I. (7)	BILZ	Understanding
	(ii) A circular loop located on $x^2 + y^2 = 9$, $z = 0$ carries a direct current of 10 A along $\mathbf{a_0}$. Calculate \mathbf{H} at $(0, 0, 4)$ and $(0, 0, -4)$.		
8.	Derive the expression for Ampere circuital law Applied (6)	DEL 0	
9.	(12)	BTL 3	Applying
9.	(i)Derive the Maxwell's curl equation for magnetic field from Ampere circuital law.	BTL 3	Applying
	The statut law.		11-78
	(ii)Solve the magnetic field at a point P(0.01, 0, 0)m if current through a co-axial cable is 6A. which is along the z-axis and a=3mm, b=9mm, c=11mm.(6)		
10.	Let A=(3y-z)ax+2xzay Wb/m in a region of free space.	BTL 4	Analyzina
	(5)	BIL 4	Analyzing
	(ii)At P(2,-1,3) find A , B , H and J (8)		
11.	(i) Estimate the expression for inductance of a toroidal coil carrying current I,	BTL 6	Creating
(with N turns and the radius of toroid 'r'. (7)		
12.	(ii) Formulate the expression for inductance of a coaxial cable. (6) Examine the magnetic field intensity within a magnetic material where	Day :	
	Examine the magnetic field intensity within a magnetic material where (i)M=150A/m and μ =1.5x10 ⁻³ H/m (7)	BTL 4	Analyzing
	(ii) B =300 μ T and χ_m =15. (6)		
13.	Describe about the magnetic boundary condition at the interface between two	BTL 2	Understanding
	magnetic medium and derive the necessary boundary conditions. (13)	BILZ	Onderstanding
14.	A solenoid with N ₁ =2000, r ₁ =2 cm and l ₁ = 100cm is concentric within a second	BTL 4	Analyzing
	coil of N ₂ = 4000, r ₂ = 4cm and l ₂ =100cm.Calculate mutual inductance		
	assuming free space conditions. (13)		
1.	PART – C		4
1.	(i) Distinguish magnetic scalar potential from the vector potential with necessary equations. (8)	BTL 5	Evaluating
	(ii) Calculate the magnetic flux density for a current distribution in free space,		
	$\mathbf{A} = (2x^{2}y + yz) \hat{\mathbf{a}}_{x} + (xy^{2} - xz^{3}) \hat{\mathbf{a}}_{y} - (6xyz - 2x^{2}y^{2}) \hat{\mathbf{a}}_{z} Wb/m. \tag{7}$		
((i) At a point P(x, y, z) the components of vector magnetic potential are	BTL 5	Evaluating
	given as $A_1 = (4x + 3y + 2z)$, $A_2 = (5x + 6y + 3z)$ and $A_2 = (2x + 3y + 5z)$. Invent		
	at point P. (8) (ii) A solenoid has an industance of 20mH. If the length of the colonsidia		
	(ii) A solenoid has an inductance of 20mH. If the length of the solenoid is increased by two times and the radius is decreased to half of its original value,		
	Compute the new inductance. (7)		
3.	Region 1 is the semi-infinite space in which 2x-5y>0, while region 2 is defined	BTL 6	Creating
+	by $2x-5y<0$. Let $\mu_{\Gamma 1}=3$, $\mu_{\Gamma 2}=4$ and $\bar{H}_1=30ax$ A/m. Calculate (a) $ \bar{B}_1 $,		
	(b) $ \overline{\mathbf{B}}_{N1} $, (c) $ \overline{\mathbf{H}}_{tan1} $, (d) $ \overline{\mathbf{H}}_{2} $. (15)		
4.	(i) A solenoid is 50 cm long, 2 cm in diameter and contains 1500 turns. The	BTL 6	Creating
	cylindrical core has a diameter of 2 cm and a relative permeability of 75. This coil is co-axial with second solenoid which is 50 cm long, 3 cm diameter and		
	1200 turns. Solve the inductance L for inner and outer solenoid. (8)		
	(ii) Propose the solution for energy stored in the solenoid having 2m long and		
	10 cm in diameter and is wound with 4000 turns of wire, carrying a current of		
	8 A. (7)		July
		PRINC	PAL
		mana DAIA	I FAGINEL

MEENAKSHI SUNDARARAJAN ENGINEEH HG COLL 363, ARCOT ROAD, KODAMBAKKAM, CHENNAJ-600 824

UNIT IV TIME-VARYING FIELDS AND MAXWELL'S EQUATIONS

Faraday's law, Displacement current and Maxwell-Ampere law, Maxwell's equations, Potential functions, Electromagnetic boundary conditions, Wave equations and solutions, Time-harmonic fields

3 Write the Max 4 Give the Max 5 Write about to 6 Discuss phas 7 Infer the exp time varying 8 Summarize to 10 Illustrate the 11 Develop the 6 12 Identify the s 13 Represent a p 14 Analyze on the exist.	characteristics medium in which field exist?	BTL 1	Remembering Remembering
3 Write the Max 4 Give the Max 5 Write about to 6 Discuss phas 7 Infer the exp time varying 8 Summarize to 9 Outline the do 10 Illustrate the 11 Develop the co 12 Identify the s 13 Represent a p 14 Analyze on the exist.		BTL 1	Remembering
4 Give the Max 5 Write about to 6 Discuss phas 7 Infer the exp time varying 8 Summarize to 9 Outline the do 10 Illustrate the 11 Develop the of 12 Identify the s 13 Represent a p 14 Analyze on the exist.	112		1 remembering
5 Write about to 6 Discuss phase 7 Infer the exp time varying 8 Summarize to 9 Outline the decrease 10 Illustrate the 11 Develop the 6 12 Identify the second 13 Represent a per 14 Analyze on the exist.	axwell's expression for free space.	BTL 1	Remembering
6 Discuss phas 7 Infer the exp time varying 8 Summarize ti 9 Outline the d 10 Illustrate the 11 Develop the e 12 Identify the s 13 Represent a p 14 Analyze on the exist.	xwell's equation derived from faraday's law.	BTL 1	Remembering
7 Infer the exp time varying 8 Summarize the 9 Outline the d 10 Illustrate the 11 Develop the 6 12 Identify the s 13 Represent a p 14 Analyze on the exist.	time varying field.	BTL 1	Remembering
8 Summarize to 9 Outline the documentation 10 Illustrate the 11 Develop the documentation 12 Identify the summarize to 13 Represent a public 14 Analyze on the exist.	se velocity with expression.	BTL 2	Understanding
9 Outline the d 10 Illustrate the 11 Develop the c 12 Identify the s 13 Represent a p 14 Analyze on the exist.	pression for induced emf when a moving closed path is placed in a magnetic field.	BTL 1	Remembering
10 Illustrate the 11 Develop the of 12 Identify the s 13 Represent a p 14 Analyze on the exist.	he differential form of Maxwell's Equation.	BTL 2	Understar ing
11 Develop the control of the contro	lifference between conduction current and displacement current.	BTL 2	Understanding
12 Identify the s 13 Represent a p 14 Analyze on the exist.	Maxwell's equation for a good conductor.	BTL 2	Understanding
13 Represent a p 14 Analyze on the exist.	expression for Maxwell's equation in integral form.	BTL 3	Applying
14 Analyze on the exist.	significance on displacement current.	BTL 3	Applying
CXISt.	phasor in rectangular and polar form.	BTL 3	Applying
Point out on t	he materials in which both conduction and displacement current	BTL 4	Analyzing
	the phenomenon of electromagnetic induction.	BTL 4	Analyzing
Based on the dielectric mat	magnitudes of current densities how to categorize conductor and terials?	BTL 4	Analyzing
17 Explain the statement	significance of ratio of conduction current density and current density.	BTL 5	Evaluating
18 Evaluate the rampere circuit	modification in the equation of continuity due to inconsistency of tal law.	BTL 5	Evaluating
potential.	arded electric scalar potential and retarded magnetic vector	BTL 6	Creating
Give the situa	tions, when the rate of change of flux results in a non-zero value.	BTL 6	Creating
	PART B		
$\mathbf{D} = 10 \mathbf{x} \mathbf{a} \mathbf{x} + 5 \mathbf{y} \mathbf{a}$	flux density in a charge free region is given by $\mathbf{a}_{y}+kz\mathbf{a}_{z}\mu C/m^{2}$. Find the constant k. (7) netic field $\mathbf{H}=(3x\cos\beta+6y\sin\alpha)$ \mathbf{a}_{z} , Find current density \mathbf{J} if fields with time. (6)	BTL 1	Remembering

July 1

PRINCIPAL

MEENAKSHI SUNDARARAJAN ENGINE ERMG1(EMAL 2019-20 (Even) 363, ARCOT ROAD, KODAMBAKKAM, CHENNAI-600 024

9

2	A circular loop of N turns of conducting wire lies in the XY plane with its center at the origin of magnetic field specified by $\mathbf{B} = B_0 \cos (\pi r/2b) * \sin \omega t$ az where, b is the radius of the loop and ω is the angular frequency. Find the emf induced in the loop.	BTL 1	Remembering
3	 (i) Express Maxwell's equation for harmonically varying fields. (ii) In a given lossy dielectric medium, conduction current density J_c=0.02 sin10 t (A/m²). Find the displacement current density if σ=10° S/m and ε_r=6.5 	BTL 1	Remembering
4	Derive the Maxwell's equation for a time varying are modified for time varying from fundamental laws of electric and magnetic fields. (13)	BTL 1	Remembering
5	Write in detail on retarded scalar and vector potential and derive the generalized wave equation. In free space. (13)	BTL 2	Understanding
6	Illustrate the integral and point form of Maxwell's equations for static fields. (13)	BTL 3	Applying
7	(i)Express the transformer EMF induced in a stationary closed path in a time varying B field. (7) (ii)Obtain the motional EMF induced in moving closed path in static B field.(6)	BTL 2	Understanding
8	Calculate the maximum emf induced in a coil of 4000 turns of radius of 12 cm rotating at 30rps in a magnetic field of 0.05 Wb/m ² . (13)	BTL 2	Understanding
9	(i)Demonstrate the detailed steps for the derivation of electromagnetic boundary conditions for a time varying fields. (7) (ii)Determine emf induced about the path r = 0.5, z = 0, t = 0. If B = 0.01sin377t T. (6)	BTL 3	Applying
10	(i)Illustrate with necessary fundamentals the equation of continuity of current in differential form. (7) (ii) Prove that modified ampere's law is consistent with the time varying field. (6)	BTL 3	Applying
(,	Give the physical interpretation of Maxwell's first and second equations. (13)	BTL 4	Analyzing
12	In a region where $\varepsilon_r = \mu_r = 1$ and $\sigma = 0$ let $\mathbf{A} = 10^{-3}$ y $\cos 3*10^{8}$ t $\cos 2 \mathbf{a_z}$ Wb/m and $V = 3*10^{5}$ y $\sin 3*10^{8}$ t $\sin z V$. Find \mathbf{E} and \mathbf{H} .	BTL 4	Analyzing
13.	Derive an expression for displacement current density an the physical significance of it. (13)	BTL 5	Evaluating
14	Do the fields $E=E_m$ sinx sint a_y and $H=(H_m // \mu_0)$ cosx cost a_z satisfy Maxwell's equations? (13)	BTL 6	Creating
	PART C		
1	In a material for which σ =5S/m and ε_r = 1, the electric field intensity is E = 250 sin10 10 t V/m. Estimate the conduction and displacement current densities, and the frequency at which both have equal magnitudes. (15)	BTL 6	Creating

EC8451 EMF_Qbank_2019-20 (Even)

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE

363, ARCOT ROAD, KODAMBAKKAM,

2	The unit vector $0.48 \ \hat{\mathbf{a}}_{x} - 0.6 \ \hat{\mathbf{a}}_{y} + 0.64 \ \hat{\mathbf{a}}_{z}$ is directed from region 2 ($\mathcal{E}_{t2} = 2.5$, $\mu_{r2} = 2$, $\sigma_{2} = 0$) towards region 1 ($\mathcal{E}_{r1} = 4$, $\mu_{r1} = 10$, $\sigma_{1} = 0$). If $\mathbf{H}_{1} = (-100 \ \hat{\mathbf{a}}_{x} - 50 \ \hat{\mathbf{a}}_{y} + 200 \ \hat{\mathbf{a}}_{z}$) sin 400t A/m at the point p in region 1 adjacent to the boundary. Determine the amplitude at point P of \mathbf{H}_{N1} , \mathbf{H}_{tan1} , \mathbf{H}_{N2} , \mathbf{H}_{2} . (15)	BIL	Evaluating
	The large Hall in a medium characterized by $\sigma=0$, $\mu=\mu_0$, $E=4$ E0 and $E=20$	BTL 5	Evaluating
3	Calculate β and H in a medium characteristic β (15)		
	sin (10 t-bz)ay V/III	BTL 6	Creating
4	Solve the value of k such that following parts of equation in the region where $\sigma=0$, $\sigma_{v}=0$ (i) $\mathbf{E} = [\mathbf{k}\mathbf{x}-100t]$ ay V/m, $\mathbf{H} = [\mathbf{x}+20t]$ az A/m and $\mu=0.25$ H/m, $\epsilon=0.01$ F/m (ii) $\mathbf{\bar{D}} = 5\mathbf{x}\mathbf{a}_{x}-2\mathbf{a}_{y}+\mathbf{k}\mathbf{z}\mathbf{a}_{z}$ μ C/m ² , $\mathbf{\bar{B}} = 2\mathbf{a}_{y}$ mT and $\mu=\mu_{0}$, $\epsilon=\epsilon_{0}$. (7)		
	3	 μ_{r2} = 2, σ₂ = 0) towards region 1 (Eri = 4, μπ 1 region 1 adjacent to the boundary. â_y + 200 â_z) sin 400t A/m at the point p in region 1 adjacent to the boundary. Determine the amplitude at point P of H_{N1}, H_{tan1}, H_{N2}, H₂. (15) Calculate β and H in a medium characterized by σ=0, μ= μ0, ε=4 ε0 and E=20 sin (10⁸ t-βz)a_y V/m (15) Solve the value of k such that following pairs of field satisfies Maxwell's equation in the region where σ=0, σv=0 (Ω E = flex 100t) a_y V/m, H=[x+20t] a_z A/m and μ=0.25H/m, ε=0.01F/m (8) 	 ây + 200 âz) sin 400t A/m at the point P in Tegron A. Determine the amplitude at point P of HNI, Htan1, HN2, H2. (15) Calculate β and H in a medium characterized by σ=0, μ= μ0, ε=4 ε0 and E=20 sin (10⁸ t-βz)ay V/m (15) Solve the value of k such that following pairs of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 size and E=20 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 part of field satisfies Maxwell's equation in the region where σ=0, σv=0 part of field satisfies Maxwell's equation field satisfies Maxwell's equation field satisfies maxwell's equation field satisfies maxwell satisf

PLANE ELECTROMAGNETIC WAVES UNIT V

Plane waves in lossless media, Plane waves in lossy media (low-loss dielectrics and good conductors), Group velocity, Electromagnetic power flow and Poynting vector, Normal incidence at a plane conducting bour 'ry,

Normal incidence at a plane dielectric boundary.

INOLIN	PART - A		
1	Define wavelength.	BTL 1	Remembering
$\frac{1}{2}$	State Poynting theorem.	BTL 1	Remembering
3	Describe the characteristics of uniform plane wave?	BTL 1	Remembering
4	What is meant by depth of penetration?	BTL 1	Remembering
5	Give the expressions for propagation constant, intrinsic impedance if a wave propagates in a lossy dielectric.	BTL 1	Remembering
6	Write down the significance of loss tangent.	BTL 1	Remembering
7	Demonstrate intrinsic impedance of free space.	BTL 2	Understanding
8	Point out the difference between attenuation constant and phase constant.	BTL 2	Understanding
9	Infer about general wave equation in terms of electric and magnetic fields.	BTL 2	Understanding
10	Explain the significance of pointing vector?	BTL 2	Understar "ng
11	Identify the relationship between average power density and amplitude of electric field.	BTL 3	Applying
12	Construct the expressions for instantaneous, average and complex Poynting vector.	BTL 3	Applying
13	Derive the expression for transmission and reflection coefficient for normal incidence at plane conducting boundary.	BTL 3	Applying
14	Express the values of skin depth for a plane wave propagating through the dielectric with attenuation constant of 0.2887 Np/m.	BTL 4	Analyzing
15	Examine the significance of intrinsic impedance.	BTL 4	Analyzing
16	Analyze the wave equation in phasor form.	BTL 4	Analyzing
17	Find the expression for the intrinsic impedance, attenuation constant and phase constant for good conducting medium.	BTL 5	Evaluating
18	Compute propagation constant in free space for a wave with 100MHz.	BTL 5	Evaluating
19	Express Poynting theorem in point form and integral form.	BTL 6	Creating
20	Develop the expressions for Standing wave ratio when the amplitudes of reflected and incident waves are equal.	BTL 6	Creating

EC8451 EMF_Qbank_2019-20 (Even)

PRINCIPAL

	PART – B		
1	Starting Co. 1		
	Starting from the Maxwell's equation derive homogenous vector Helmholtz's equation in phasor form. (13)	BTL 1	Remembering
2	Find the wave equation for the electric and magnetic fields for free space conditions. (13)	BTL 1	Remembering
3	Write short notes on uniform plane waves and derive the wave equation. (13)	BTL 1	Remembering
4	(i) State and prove Poynting theorem.(ii)Describe the Poynting vector, average power and instantaneous power.(5)	BTL 1	Remembering
5	A uniform plane wave $\mathbf{E}_y = 10 \sin (2\pi * 10^{8.1} - \beta x)$ $\hat{\mathbf{a}}_y$ is travelling in x directon in free space. Determine Phase constant, Phase velocity, Expression for \mathbf{H}_z . Assume $\mathbf{E}_z = 0 = \mathbf{H}_y$. (13)	BTL 5	Evaluating
E	Explain the condition under which the magnitude of the reflection coefficient equals that of the transmission coefficient for a uniform wave at normal incidence on an interface between two lossless dielectric medium. (13)	BTL 2	Understanding
7	Demonstrate the equations for a plane wave incident normally on a plane dielectric boundary. (13)	BTL 2	Understanding
8	A uniform plane wave in a lossless medium with intrinsic impedance Π_1 is incident normally onto another lossless medium with intrinsic impedance Π_2 through a plane boundary. Develop the appropriate for the timesessing for the timeses for the timesessing for the timeses for the timesessing for the timeses for the timesessing for the timese	BTL 3	Applying
	through a plane boundary. Develop the expressions for the time average power densities. (13)		
9	In free space, $E = 50 \cos (\omega t - \beta z) \hat{a}_x$ V/m. Solve for the average power crossing (13)	BTL 3	Applying
10	a circular area of radius 2.5 m in the plane Z=0. Assume $E_m = H_m \ \Pi_0$ and $\Pi_0 = 120\pi\Omega$. phase and propagation constant for electromagnetic waves in any medium.(13)	BTL 4	Analyzing
11	Derive the electromagnetic wave equation in phasor form with necessary equations. (13)	BTL 4	Analyzing
12	Illustrate the power flow in a coaxial cable using Poynting theorem. (13)	BTL 2	Understanding
13	Examine the expressions for the transmission and reflection coefficients at the interface of two media for normal incidence. (13)	BTL 4	Analyzing
14	Estimate the frequency of a wave and the conductivity of the medium for a uniform plane wave travelling at a velocity of 2.5*10 ⁵ m/s having a wavelength of 0.25 mm in a non-magnetic good conductor. (13)	BTL 6	Creating
	PART – C		
1	A 6580 MHz uniform plane is propagating in a material medium of Er =2.25. If the amplitude of electric field intensity of a losseless medium is 500 V/m. Calculate the phase constant, Propagation constant, velocity, wavelength and intrinsic impedance. Also find the amplitude of magnetic field intensity. (15)	BTL 5	Evaluating

				3
2	(i) Determine α, β and the wavelength of a material for a 9 GHz wave propagating through a material that has a dielectric constant of 2.4 and loss tangent of 0.005. (10)	BTL 5	Evaluating	
	permeability of 2 and relative permittivity of 3A at 1 GHz. (5)			
3	Determine the amplitudes of reflected and transmitted fields (electric and magnetic both) at the interface of two regions, if $\mathbf{E}_i = 1.5 \text{ mV/m}$ in region 1 for which $\mathcal{E}_{r1} = 8.5$, $\mu_r = 1$ and $\sigma = 0$ and region 2 is a free space. (15)	BTL 6	Creating	
4	(i) Calculate the skin depth and wave velocity at 2 MHz in aluminum with conductivity 40 MS/m and $\mu_r = 1$. (10) (ii) A plane wave propagating in free space has a peak electric field of 750mV/m. Estimate the average power through a square area of 12cm on a side perpendicular to the direction of propagation. (5)	BTL 6	Creating	

(3)+7)

Jun

PRINCIPAL

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE

EC8451 EMF_Qbank_2019-20 (Even)

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE TIME TABLE

ECE

INTERNAL ASSESSMENT TEST - I JAN-FEB 2020

II YEAR – III SEMESTER Time: 9.30AM TO 11.30 AM

DATE	CIVIL ENGG	CSE	EEE	ECE	MECH ENGG	IT
30.01.2020	Construction Techniques and Practice	Computer Architecture	Transmission and Distribution	Electronic Circuits II	Kinematics of Machinery	Computer Architecture
31.01.2020	Strength of Materials II	Database Management Systems	Measurements and Instrumentation	Communication Theory	Manufacturing Technology II	Database Management and Systems
01.02.2020	Applied Hydraulic Engineering	Design and Analysis of Algorithms	Linear Integrated circuits and applications	Electromagnetic Fields	Engineering Metallurgy	Design and Analysis of Algorithms
03.02.2020	Concrete Technology	Operating Systems	Electrical Machines - II	Linear Integrated Circuits	Thermal Engineering I	Operating Systems
04.02.2020	Soil Mechanics	Software Engineering	Control Systems	Environmental Science and Engineering	Strength of Materials for Mechanical Engineers	Environmental Science and Engineering
05.02.2020	Numerical Methods	Probability and Queueing Theory	Numerical Methods	Probability and Random Processes	Statistics and Numerical Methods	Probability and Statistics

Judn

PRINCIPAL

MEENAKSHI SUNDARARAAN ENGINEERING COLLEGE
363, ARCOT ROAD, KODAMBAKKAM,
CHENNAI-600 024

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE TIME TABLE

INTERNAL ASSESSMENT TEST - I JAN-FEB 2020

III YEAR – VI SEMESTER Time: 9.30AM TO 11.30 AM

DATE	CIVIL ENGG	CSE	EEE	ECE	MECH ENGG	IT
30.01.2020	Design of Steel Structural Elements	Internet Programming	Protection and switch gear	Microprocessors and Microcontrollers	Design of Transmission Systems	Computational Intelligence
31.01.2020	Structural Analysis II	Artificial Intelligence	Embedded Systems	VLSI Design	Computer Aided Design and Manufacturing	Object Oriented Analysis and Design
01.02.2020	Irrigation Engineering	Mobile Computing	Communication Engineering	Wireless Communication	Heat and Mass Transfer	Mobile Communication
03.02.2020	Wastewater Engineering	Compiler Design	Solid State Drives	Principles of Management	Hydraulics and Pneumatics	Big Data Analytics
04.02.2020	Highway Engineering	Distributed Systems	Design of Electrical Apparatus	Transmission Lines and RF Systems	Finite Element Analysis	Computer Graphics and Multimedia
05.02.2020	Air Pollution and Control Engineering	Software Testing		Wireless Networks	Gas Dynamics and Jet Propulsion/ Automobile Engineering	Software Testing

Secretary

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE

TIME TABLE

INTERNAL ASSESSMENT TEST - I JAN-FEB 2020

IV YEAR – VIII SEMESTER

Time: 9.30AM TO 11.30 AM

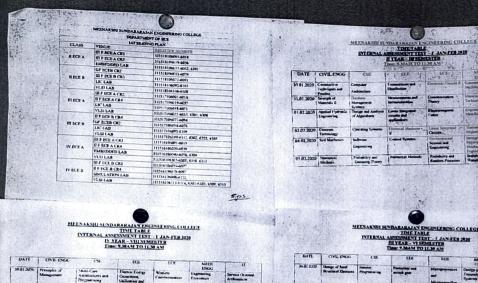
DATE	CIVIL ENGG	CSE	EEE	ECE	MECH ENGG	IT
30.01.2020	Principles of Management	Multi-Core Architectures and Programming	Electric Energy Generation, Utilization and Conservation	Wireless Communication	Engineering Economics	Service Oriented Architecture
31.01.2020	Prefabricated Structures	Human Computer Interaction	Power Electronics for Renewable Energy Systems	Wireless Networks	Production Planning and Control	Software Project Management
01.02.2020	Repair and Rehabilitation of Structures	Professional Ethics in Engineering	Professional Ethics in Engineering	Professional Ethics in Engineering	Advanced I.C. Engines	Professional Ethics in Engineering
03.02.2020				Total Quality Management		Business Intelligence

PRINCIPAL

ATTHEORY OF THE PROPERTY OF THE CONTROL OF THE CONT

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE

DEPARTMENT OF ECE

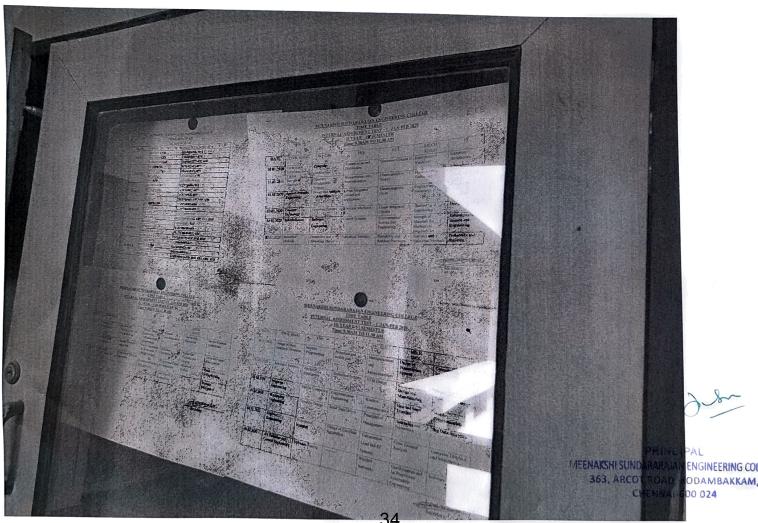

IAT SEATING PLAN

CLASS	VENUE	REGISTER NUMBER
02.100	III F ECE A CR2	311518106001-6018
II ECE A	III F ECE A CR3	311518106019-6036
2021	EMBEDDED LAB	311518106037-6052, 6301
	GF ECEB CR2	311518106053-6070
	III F ECE B CR3	311518106071-6091
II ECE B	LIC LAB	311518106092-6105
1	VLSI LAB	311518106106-6108
	III F ECE A CR2	311517106001-6018
	II F ECE A CR4	311517106019-6037
III ECE A	LIC LAB	311517106038-6051
	VLSI LAB	311517106052-6057, 6301, 6306
	II F ECE B CR4	311517106077-6094
	GF ECEB CR2	311517106058-6076
III ECE B	LIC LAB	311517106095-6108
	VLSI LAB	311517106109-6112, 6302, 6303, 6305
	III F ECE A CR3	311516106001-6019
	II F ECE A CR4	311516106020-6039
IV ECE A	EMBEDDED LAB	311516106040-6058, 6304
	VLSI LAB	311516106305-6308, 6310, 6312
	III F ECE B CR3	311516106059-6077
	II F ECE B CR4	311516106078-6097
IV ECE B	SIMULATION LAB	311516106098-6112
	VLSI LAB	311516106113-6116, 6301-6303, 6309, 6313

PRINCIPAL

MESNAKSHI SUNDARARAJAA SINGINEERING COLLEGE

323, ARCOT RUAD, KODAMBAKKAM,



internation.

MITSAKURI SINDARARA AN PINGINEFRING COLLEGE TIME FABLE INTERNAL AND SOMETHING TO LEGE TO THE PROPERTY OF THE P

DATE	CIVIL PICK	(2	114	LCE	MECH	l n
34.61 2750		Programmy Programmy	Production and minute gran	Management and Microscopius	Design of it	Computational Impligence
Lot 230	Commercial According to	Artiferni Incligance	Fashedded System	VLSI Design	Company Albert Design and Minnestrating	Object Oriented Analysis and Design
1.02.3430	Igraphica Digitation	Mahi Camala	Comments	Window Lamenteeding	How and Mines Francis	Melan Commence
פניוב מו.ע	Especies .	Compiles Design	Salal State Directs	Principles of Management	Industrial Incident	Big One Analysis
1.00 2003	Highway \ Sagismeg	Destand System	Design of Contract Asserting	Local material	Finite Element Analysis	Computer Graphics
0.05.30,0	Air Polision and I.	Sections Testing) ×	Product Products	Con Dynamics and for Propulsions Assembliar Engineering	Submer (point

MEENAKSHI SUMDARASAJAN ENGINESSING COLLEGE

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, TODAMBAKKAM,

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE,CHENNAI-24 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING INTERNAL ASSESSMENT TEST 1 –EVEN SEMESTER 2019-2020

DATE	CLASS ROOM II A	CLASS ROOM III A	CLASS ROOM IV A	CLASS ROOM II B	CLASS ROOM III B	CLASS ROOM IV B	LIC LAB1	LIC LAB2	EM LAB1	EM LAB2
30.01.2020	A JOSEPH	M.A.Sechain	S ELANGOVAN	S.SATHEESH KUMAR	S BALASUBRAM ANIAN	A VELU	Seethalakshmi	N MEENAKSHI	J PRATHIBA NANDHI	MANUE A
31.01.2020	N MEENAKSHI	NOOR KHAN	& S. E	A JOSEPH	R NIRMALADI:VI	J PRATHIBA NANDHI	DKARTHIKA	t -	12 S21	OTI M. E
01.02.2020	MI-0012	AMUTHA (Maths)	NOOR KHAN	MIMANTULA	000	SSI CONTRACTOR	ssk def.	l	ELANGOVAN	BALASUBR AMANIAN
03.02.2020	D KARTHIKA	M.A.S	S.SATHEESH KUMAR	M.W	N MEENAKSHI		ELÂNGOVAN	li od	A JOSEPH	PRATHIBA
04.02.2020	S SINDHU	PAMANTUNA (CHIAM)	M.A.Seshaiah	M DEEPA	D KARTHIKA	A VELU				
05.02.2020	S BALASUBRA MANJAN	M MANJULA	SUJEE	J PRATHIBANA NDHI	NOOR KHAN	D, k				

ALING CHEMAN TOO OF THE PRICE O

· ·

SECRETARY

STAFF NAME	NO OF DUTIES	STAFF NAME	NO OF DUTIES
S BALASUBRAMANIAN	3	A VELU	4
N MEENAKSHI	3	S SINDHU	4
M MANJULA	3	R NIRMALADEVI	4
A JOSEPH	3	SELANGOVAN	4
M A SESHIAHA	3	D KARTHIGA	4
M DEEPA	3	J PRADEEPA	4
NOOR KHAN	3	P MANJULA	1
S SATHISHKUMAR	4	AMUTHA	1
		SEETHALAKSHI (CHEM)	1
,		SUJEE (CHEM)	1

SECRETARY

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE

363, ARCOT ROAD, KODAMBAKKAM, CHENNAI-600 024

EXAM COORDINATORS SUPERVISION DUTY INTERNAL ASSESSMENT TEST I - EVEN SEMESTER 2019-2020

	NAME OF FACULTY	DEPARTMENT
DATE	NAME OF TACOBLA	
	MALINI GAYATHRI (CE)	IT
	YAMUNA S (CSE)	ECE
30.01.2020	BHASKAR (EEE)	CSE
	SARASWATHI B (ECE)	MECH
		CIVIL .
	TORAL	EEE
	SRIRAM K P	EBL
	YAMUNA S (CSE)	EEE
	MALINI GAYATHRI (CE)	MECH
31.01.2020		CSE
	SARASWATHI B	IT
	TORAL(MECH)	CIVIL
	BHASKAR (EEE)	ECE
	SRIRAM K P	CSE
	MALINI GAYATHRI (CE)	
01.02.2020	YAMUNA S (CSE)	MECH
	BHASKAR (EEE)	ECE
	SARASWATHI B (ECE)	CIVIL
		IT
	TORAL(MECH)	EEE
	SRIRAM K P(IT)	MECH
	BHASKAR (EEE)	
03.02.2020	YAMUNA S (CSE)	CIVIL
40.77	MALINI GAYATHRI (CE)	ECE
		IT
	SARASWATHI B	CSE
	TORAL	EEE
	SRIRAM K P	7

PRINCIPAL MEENAKSHI SUNDARARAJAN ENGINEERING CO! 363, ARCOT ROAD, KODAMBAKKAN CHENNAI-600 024

DATE	NAME OF FACULTY	DEPARTMENT
04.02.2020	YAMUNA S (CSE)	IT EEE
	MALINI GAYATHRI (CE) SARASWATHI B	CSE
	TORAL(MECH) BHASKAR (EEE)	CIVIL
	SRIRAM K P	ECE IT
05.02.2020	BHASKAR (EEE) YAMUNA S (CSE)	MECH
	MALINI GAYATHRI (CE) SARASWATHI B	ECE EEE
	TORAL SRIRAM K P	CIVIL

SECRETARY

PRINCIPAL

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, KODAMBAKKAM,

CHENNA1-600 024

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE, CHENNAI-24 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING INTERNAL ASSESSMENT TEST -I JAN/FEB 2020

Sub Name: ELECTROMAGNETIC FIELDS

Semester:

IV

Sub Code:

EC 8451 Class: II YEAR EC E Time:

2 hours 60

Date: 01.02.2020

Marks: CO 1 & CO 2

Part-A(6X2=12)

1 Define Stokes theorem.

- Outline the relationship between magnetic flux density and field density. 2
- Obtain the value of α if magnetic field B is a solenoid where $B=25xax+12yay+\alpha$ zaz. 3
- Write the statement of Coulomb's law. 4
- 5 State Gauss law.
- Solve the energy stored in a 10 μF capacitor which has been charged to a voltage of 400V. 6

Part-B(2*11=22)

a) Explain how a spherical coordinate system describes the position of the point in free space and 7. its differential elements.

- b) (i) Elaborate on curl of a vector and its significance.
- (ii) State and prove Stokes theorem to relate line integral and surface integral
- a)(i)State and explain coulomb's law and deduce the vector form of force equation between the 8. two point charges.
 - (ii) Write note on principle of Superposition as applied to charge distribution.

OR

b) A cylindrical capacitor consists of an inner conductor of radius 'a' & an outer conductor whose inner radius is 'b'. The space between the conductors is filled with a dielectric permittivity Er & length of the capacitor is L. Estimate the value of the Capacitance.

Part-C(2*13=26)

a) Evaluate divergence theorem for the given $D = 2r z^2 \hat{a}_r + r \cos^2 \varphi \hat{a}_z$, where r = 3 and z = 5. 9.

OR

- b) Estimate JF.nds using divergence theorem where F= 2 xy âx +y2 ây + 4 yz âz , surface of the cube bounded by x=0, x=1, y=0, y=1 and z=0, z=1.
- 10. a)(i) Derive the equation of potential due to point, line, and surface and volume charge and obtain the relation between E and V.
 - (ii) Given the potential V= (10 sin θ cos ϕ) /r2. Find the electric flux density at (2, π /2, 0).

OR

b) (i) Determine the capacitance of general spherical capacitor, isolated Sphere coated with dielectric.(ii) For a conducting sphere of 2 cm in diameter, covered with a layer of polyethylene with Er = 2.26 and 3 cm thick, find the capacitance.

PRINCIPAL

MEENAKSHI SUNDARARAJAN ENGINEE

JULEGE

363, ARCOT ROAD, KODAMBAKKAM, CHENNAL-600 024

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE

(Managed by I.I.E.T Society) 363, Arcot Road, Kodambakkam, Chennai-24 Approved by AICTE & Affiliated to Anna University

ACADEMIC YEAR: 2019 - 2020

Degree	: B:E	Branch	ECE-B
Register Number	er :.Zus.&10.610.6	Semester	:53
Subject Name	:ElectroMagnetic Fields	Max.Mark	s:6D
			:01-02-2020
Name	of the Invigilator		are of the Invigilator with Date above particulars are verified)
Д.	JOSEPH		See 12200

Inst	ructio	n to the cand	idate: I	Put a tic	k mar	rk (✓) for th	e ques	tions attended	in the	tick mark co	lumn against e	ach question
PART	Г-А			idate: Put a tick mark () for the questions attended in the tick mark column against each question PART-B&C								
Q.No.	 ✓	Marks	Que	stion	i	i	ii	ii	iii	iii	Total	Grand
Q.1.10.	•	TVIAI RS	N	lo.	✓	Marks	✓	Marks	✓	Marks	Marks	Total (in words)
1	1	3	7	Α	1							(iii words)
2			•	В	1	6	\sim	5			11	FIVE ONE
	/	<u>a</u>	8	Α	1	6	1	5			. 11	the or a
3		3	Ū	В		a f						
4	/	3	9	Α								Grand Total
5	/	02		В	4	13					13	
			10	Α		5					5	
6			10	В								[5]
Tota	ıl	11	Total 40				40	60)				
Date Name of the Examiner Signature of the Examiner					miner							
2	2/2/2020 MINTERNALLICH			RINCIPAL								

	Part-c
9)6	Griven:
, ,	F = 2xy
	$y=0 \qquad y=1$ $z=0 \qquad z=1$
	~~~
	To dz
	Ante Care
<i>J</i>	- )y
	nc nc
	Divergence Theorem Stales that
_	
	\$ A.ds = S.V.A.dv
_	2) + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1
_	SA.ds = If front + I back + I left + I top + I bottom.
-	
	Front'-
	ds = dzdy az [x=1]  MEENAKSHI SUNDARARAJAN ENGINEERING  363, ARCOT ROAD, KODAMBAKKA
	(3) (2) dz dy =) (2xy(z)) dz dy (xy)
	$\int 2xy(z) dz dy = \int 2xy(z) dy = \int 2xy(y^2) dy$

 $\infty = 1$ 2 1/ Back! ds=dzdy (-a2) So - 2xy dx dy  $-2\pi(42)$ =) -2x·1/2 = 0// . ds = docdz.ag. [y=1] Sos y2. dr. dz  $\int_0^1 y^2(n) dz$ PRINCIPAL

NAKSHI SUNDARARAJAM ENGINEERING COLLEGE

363, ARCOT ROAD, KOPAMBAKKAMI,

THERMA (ZO) 024 = 11

		3
	foft:	
	ds = dndz (-ag) [y=0]	
	$\int_{0}^{1} \int_{0}^{1} -y^{2}(n) dn dn$	
	Jaso 9 (20) . dz	
	$-y^2(z)$	
	= y ² - 0//.	
-		
	ds=dndy ar [Z=1]	
	So So 4 yz dxdy	
	So 442(x) dy	
	So 4 yz dy	
	4(my2) . Z	
	4(1).7	
	27 = 2//.	
		July -
	Bottom'-	MEENAKSHI SUNDARARAIAN ENGINEERING COU
	ds=dxdy (-az) z=6. Sos -44z.dxdy = 0	MEENAKEHI SUNDARARAIAN ENGINEERING CO 363, ARCOT ROAD, KOUANIBAKKAAN, CHENNAI-600 926

To find Divergence (V.A)

$$= \frac{\partial}{\partial x} \frac{\partial xy}{\partial z} + \frac{\partial}{\partial y} \frac{y^2}{\partial z} + \frac{\partial}{\partial z} \frac{\partial y^2}{\partial z}$$

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE (2)

363, ARCOT ROAD, KODAMBAKKAM,

CHENNAL-600 024

Hence Rivergence Theorem is Verified

Part-B:

76) The curl of a vector is an axial or rotational vector Tokich involves circulation over of an area in a closed path as the area Shinks to o and having a normal The Curl of a vector is denoted as (VXX) and the and a vector gives us a Vector. Equation fet us consider a closed path in the Yz plane which is Shown in the fig below We know that From the laylor Series Expansion we can write Sab = dy [Az (xo, yo, 20) - (z-70/2) Ay d Ay P Sbc = dz [Ax (xo, yo, zo) - (x+xco/2) d Az | Similarly for MEENAKSHI SUNDARARAJAN ENGINEERING COLLEG 363, ARCOT ROAD, KODAMBAKKAM, CHENNAI-600 024

	Scd = -dy [Az (xo, yo, zo) + (z-zo/o) d Ay/p]
	Sda = - dz [Ax (20, yo, zo) + (2c-2co/2) d Az   P]
	By Simplifying the expressions rue get,
,	(ausl A) = \[ \frac{\partial Ay - \partial Az}{\partial y} \]
	Similarly
	$(\operatorname{Curl} A)_{y} = \begin{bmatrix} \frac{\partial}{\partial x} A_{\overline{x}} - \frac{\partial}{\partial z} A_{2c} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{bmatrix}$
	Similarly
	$\left(\frac{\partial Ax - \partial Ay}{\partial y}\right) = \left[\frac{\partial Ax - \partial Ay}{\partial x}\right]$
	Since the Curl of a vector is independent of its
	Coordinate, we represent the curl in the matrix
	format as -
	aul A = (XXA) = an ay az
	2/2x 2/2y 2/2z
	Anc Ay Az
ne	Similarly for Cylindrical courd, we write
1	PRINCIPAL PRINCIPAL COLLEGE WEENAKSHI SUNDARAR DAN BAKKAM.
	363, ARCOT ROAD & DAMBAKKAM, V
	PAP Ad SA2
	46

	Similarly for Spherical Coord we can write,
1000	TXA = Y2sino ap Tsino ap T90
	0 SINO
-212	
<del>7</del> )b)	i) Stoken theosem Stales that the
	The line integral of a vector of a closed path is equal to
	The line integral of a vector of a closed path is equal to the surface integral of the curl of that particular
	Vocas
	(ie),
	Sc Adl = Se (XA) ds
	Stoken throsen can be lastly proved similar to the
	divergence theosem
	fet rus Consider a Suraface: of
	If we consider the KHR Cell in the Surface Shown above
	the second of
	PRINCIPAL  PRINCIPAL  PRINCIPAL  PRINCIPAL  PRINCIPAL  AGA ARCOT ROAD, KODANIBAKKAN.  263 ARCOT ROAD, KODANIBAKKAN.
	MEENAKSHI SUNDARARAJAN ENGINEERING AM.  MEENAKSHI SUNDARARAJAN ENGINEERING AM.  363, ARCOT ROAD, KODAWIBAKKAM.  CHENNAI-600 024
	T1

S.	
	(Tra) de - lim 5 SuAu
	S AK-30 K=1
	C 4 10
	S. Adl
	Where Sk denotes the 1th Surface
	Therefore after for we obtain
	S(XA).ds = G(Adl
	36
8)07	i) Coulomb's law states that the force of attraction or repulsion between any lies charges is directly proportional to the product of magnitude of charges and inversely proportional to the Square of the distance between them.
	or repulsion Patron of the force of allegation
	Destroit of the state of the st
	proportional to the product of magnitude of charges
	and muersely proportional to the Square of the distance
	between them
	Fx 9,92
	F x L
	<b>R</b> ²
	Fx 9,92
	R ²
	F = K0102 .ar
7.2	r/ R2
0 2	where k is the constant of proportionality = 1
	PRINCIPAL  MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE  MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE
	363, ARCOT BOAD, KODAMBAKKAM,
2 4	41180 R2

	where are is the unit voctor which is normal and
	Which can be obtained by
	the optained by
	as - vati
	Var
	18ct an Consider
	$\frac{A_{R} - \overline{R}}{ R } = \frac{\overline{R}}{ R } - (2) = \overline{R}$
	IRI IRI. R.
	Substituting 3 in 1) We write
	F = Q102 R
	41180 R2  R
-	F= Q1Q2. R 411 E0 R ² R
	411 EO R ² R
	F = Q1Q2 R Force Fg. in vector form) 411EOR3
	411E0R3 L
	Similarly, when the point charges are placed at different distances namely Ri and Rz, then the Force equation using Coulomb's law Can be written as.
	distances namely Ri and Rz, then the Force equation
	rusing Coulomb's laur Can be written as.
	2, 200
	F = Q1Q2  ATTEO(R1-R2) ² ATTEO(R1-R2)
	MEENAKSHI SUNDARARAIAN ENGINEERING COLLET 363, ARCOT ROAD, KODAMBAKKAN
	CHENNAL 500 024
	$\frac{F = Q_1 Q_2}{4\pi \epsilon_0 (R_1 - R_2)^2} \frac{(R_1 - R_2)}{(R_1 - R_2)^2} = \frac{R_1 - R_2}{4\pi \epsilon_0 (R_1 - R_2)^3} \frac{(R_1 - R_2)}{(R_1 - R_2)^3}$
	$K_1 - K_2 = 411 co(K_1 - K_2)$

The principle of Superposition Stales that the total
charge enclosed by a Surface is equal to the
Sum of the Endividual charges become in that
Sum of the Endividual charges present in that
Pasticular surface.
Let us Consider a Surface which is having uniform
fet us Consider a Surface which is having uniform Change distribution as Shown.
\$
of a
19, 18
. (94
According to the Super position principle, the total charge enclosed in this surface S is equal to the Sum of
enclosed in this surface s is equal to the Sum of
the individual charges which can be unitten as
9 Total = 9, + 9, + 9, + 9, + 9, + 96
Total 12 13 14 75 16.
The Superposition principle proves the Cumulative
effect of the charges present enclosed in a
Synface.
The Constitution to the state of the state o
The Superposition principle can also be applied to the
MEENAKSHI SUNDARARAJAN ENGINEENING COLLEGE
363, ARCOT ROAD, KODAMBAKKAM, CHENNAI-600 024

where the total force exerted by the charges in a Surface equals the sum of individual forces exerted by the findividual charges on a test charge which can be resitten as total = Fig + Fig + Fig + Fig + Fig + Fig Part - c: Electric field due to a circular ring: where 6 in the series of the s want fet us consider a small point affect where f is the Surface charge density and de is the Small differential length.

	Coulomb's law.
	Here we Consider only a point charge do
	.'. E becomes de
	-'. dE - dQ · aR · 4πεο R ²
	we know that $R = \sqrt{r^2 + z^2}$
	To find the unit vector ar
	$ R  = \sqrt{r^2 + z^2}$ $R = -xa_x + za_z $ [Since the direction of ris reversed]
	$a_{R}^{} = -\gamma_{a_{X}} + \gamma_{a_{Z}}$ $\sqrt{\gamma^{2}+z^{2}}$
	de = da - R 4TIEO R3
7	dE: pdl ( rax + Zaz)  41180(r2+22)3/2
(3)	From the are Sector theorem.
	PRINCIPAL $dl = r \cdot d\phi$
	ARCOT ROAD, KODAMBAKKAM,  CHENNAL-600 024 dE = D T db (-xax + Zaz)
	CHENNAL-600 024 dE = 12 T. db (-rax + Zaz) 4 [[80 (32+22)3/2

Neglecting the x component, we get
dF = Pr do Zaz. (1)
 To find out the electric field blu the circular ring
$\int_{0}^{2\pi} dE \cdot dE = \int_{0}^{2\pi} \frac{2\pi}{4\pi \xi_{0} \left( \frac{2}{3} + z^{2} \right)^{3}} dE$
$\frac{E = \int x  Z  (2\pi - 0)}{4\pi  \mathcal{E}_0 \left(x^2 + z^2\right)^{3/2}}$
$\frac{E - p_{Y} z \alpha_{z}}{2 \varepsilon_{0} \left[ r^{2} + z^{2} \right]^{3/2}}$
Part-A
Stokes theorem Stales the integral of a vector over a path or a line is equal to the integral of the curl of the Vector over a Surface.
SA-dl = SS (XXA) - ds.  PRINCIPAL  MEENAKSHI SUNDARARAJAN ENGINEERING 363, ARCOT ROAD, KODAMBAKK
fine Integral of a Vector equals the Surface integral of the curl of the vector.
53

3 Solenoid =) 
$$\nabla \cdot B = 0$$
 $\frac{\partial}{\partial x} Ax + \frac{\partial}{\partial y} Ay + \frac{\partial}{\partial z} Az = 0$ 
 $\frac{\partial}{\partial x} 25x + \frac{\partial}{\partial y} 12y + \frac{\partial}{\partial z} xz = 0$ 
 $\frac{\partial}{\partial x} 37 + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + \frac{\partial}{\partial z} + xz = 0$ 
 $\frac{\partial}{\partial x} + xz = 0$ 

Coulomb's law Stalis that force of attraction/repulsion
blue 2 charges is directly proportional to the product
of their magnitude and inversely proportional to the
Square of the distance blue them

F- 9.92 ar

5) The total flux if enclosed its a Surface equals is liqual to 1/20 times the total charge enclosed by that Surface

PRINCIPAL EO.

HISUNDARARAJAN ENGINEERING COLI

Mag. Hux CHE DIOT 500-024 B

# ELECTROMAGNETIC FIELDS ASSIGNMENT - 2

1/20 X



NAME: THARANI.A

DEPARTMENT : ECE - B'

REGISTER NO: 311518106100

ROUND 45

AEENAKSHI SUNDARARAJAN ENGINEERING CI BGB, ARCOT ROAD, KODAMBAKA NA

CHENNAL-600 024

PART-B

State and emplain coulomb's law and deduce the vector form of force equation between the two point charges.

Soln:

Coulomb's law states that the force of between two point charges Q1 and Q2 is

1. Along the line joining them.

2 Disetty proportional to the product Q,Q2 of the harges.

3. Inversely proportional to the Square of the distance R between them.

It is expressed as,

F = k Q, Q2

Where k is the proportionality constant whose Value depends on the choice of system of units In SI units, charges Q1 and Q2 are in coulombs (c), the distance R is in meters (m), and the force F is in newtons (N) 30 that k = 1/41165.

The constant & is brown as the permittivity of fee space and has the value.

 $\epsilon_0 = 8.854 \times 10^{-12} \sim \frac{10^{-9}}{36\pi} \text{ F/m}$ 

k: 1 = 2 9x69 m/F

PRIN HAL

MEENAKSHI SUNDARARAJAN ENGINE BES, ARLOT ROAD, KODAM CHENNAI-600 924

$$F = \frac{Q_1 Q_2}{4\pi\epsilon_0 R^2} - (3)$$

If point charges Q1 and Q2 are located at points having position vectors 9, and 92, then the force F12 on Q2 due to Q1, is given by F12 = Q1Q2 aR12 — (4)

Where

$$R_{12} = 9_2 - 9_1$$
 - 5(4)

$$R = (R_{12})$$
 5(b)

By substituting (5) in (6) and we may write

$$(09)$$

$$F_{12} = \frac{Q_1 Q_2 (92 - 9_1)}{4 \pi a_0 [9_2 - 9_1]^3}$$

the Force Fzi en Qi due to Qz is given by

(Ox)

$$f_{21} = -F_{12}$$
 (1)

Since

i

) ALCHARCHI SI

PRINCIPAL
MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE
363, ARCOT ROAD, KODAMBAKKAM.

CHENNA1-600 024

Like charges appel each other, while unlike charges altract. This +

The distance R between the charged bodies Q, and Q2 must be large compared with the linear dimensions of the bodies; that is Q, and Q2 must be points charges.

Q, and Q2 must be static (at rest)

The signs of Q, and Q2 must be taken into account in eq (4.4). For like charges,

Q, Q2 70. For watke charges, Q, Q2 <0

2 ii)

Write note on principle of Superposition as applied to charge distribution.

F = QQ, (9-91) + QQ2(9-92) + ... + QQN(9-9N)
4116/9-913 4116/9-913
4116/9-913

(08)

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, KODAMBAKKAM,

$$T = \frac{Q}{4\pi\epsilon_0} \sum_{k=1}^{N} \frac{Q_k(x-\gamma_k)}{[x-x_k]^3}$$

The electric held intensity concept is introduced The electric field intensity (or electric field strength) E is the sorre that a unit positive charge experiences When placed in an electric field.

E : lim F Q+0 Q

or simply,  $E = \frac{F}{A}$ 

For Q>0, the electric field intensity E is Obviously in the direction of the Torce F and is measured in newton per coulomb or volts per meter.

 $E = \frac{Q}{4\pi\alpha_0 R^2} \alpha_R = \frac{Q(x-x')}{4\pi\alpha_0 |x-x'|^3}$ 

(Ox )

E = Q ar For N point charges Q, Q2, ... Q'n/ located 9, 92, 1 9N, the electric field intermity at point on is obtained from (1) and (3) as

PELINEIPAL SUNDARARAJAN ENGINEERING COLLEGER - 12 3

Obtain the formula for the electric field intensity of an infinite long straight line carrying unitorn line charge denity of Pr.

Let us assume that the line charge lies along the 'z'axis. Here we use cylindrical co-ardinates.

inates.  

$$E = \frac{1}{4\pi\epsilon_0} \int_{L^2} P_1 \frac{P}{R^3} dl' \quad (V/m)$$

Here Pi is constant and a line element dl'= dz' is shoren to be at an arbitrary distance z' from the origin. It is most important to remember that R is the distance vector directed Iron the source to the sield point, not the other way around. We have

$$R = a_{\gamma} a - a_{z} z'$$
 (a)

The electric field, dE due to the differential charge element Pedl' = Pedz' is dE = Pr dz' ar y - az z'

47760 (92+x'2)3/2

= arden + azdez

MEENAKSHI SUNDARARAJAN ENGINEEREIG COLLEGE

363, ARCOT ROAD, KODAMBAKKAM, CHEMIANDO 024

and dez = - Prz'dz' __ (3)2 __ (5)

In the above how eyn's we have decomposed dE into its components in the ar and az disections. It is easy to see that fox every Pedz'at+z' there is a charge element Pedz'at -z', which will produce a dk with components dEx and -dEz. Hence the az components will concel in the integration process, and we only need to integrate the dEx in Eq. (2).

$$E = a_x E_x = a_x \frac{P_L^x}{4\pi a_0} \int_{-\infty}^{\infty} \frac{dz'}{(x^2 + z'^2)^{3/2}}$$

$$E = a_r \frac{P_L}{2\pi \epsilon_0 a} \qquad (V/m) \qquad - \qquad (6)$$

The above egn is the result for an infinite line charge.

State and prove Gauss law.

Obtain the point form of Gauss law.

Soln:

Granss's law states that the total electric Shur V through any closed swefare is eggnal to the total charge enclosed by that surface

MEENAKSHI SUNDARARAJAN ENGINGTRING COLLEGE

MEENAKSHI SUNDARARAJAN ENGINGTRING COLLEGE

CHENNAI-600 024

(1)

2

i)

4.

$$\psi = \oint_{S} d\psi = \oint_{D} D.ds - Q.$$
= total charge enclosed  $Q = \int_{S} Pvdv - Q.$ 

(09)
$$Q = \oint_{S} D.dS = \int_{S} Pvdv - Q.$$

By applying divergence theorem to the middle term in ey @, we lave

& D. ds = J, V. Ddv -B

Comparing the two volume integrals in eq

@ and (5), results in.

Which is the first of the four Maxwell's Surface Cognations. Ear 6 states that the volume charge density is the same as the divergence

of the electric flux density.

Gauss's law in different ways; lay & is integral form, whereas eg 6 is the differential or point form of Grans's law

Gauss's law is an alternative statement of Coulomb's law; proper application of the divergence theorem to Coulomb's law Results in Granss's law.

MEENAKSHI SUNDARAKAJAN ENGI**NE**EI 1363, ARCOT ROAD, KODAMB CHENNAL 600 02.0

Granss's law provides an easy means of S . finding E or D fox symmetrical charge distributions Such as a point charge, and infinite line charge, and a spherical distribution of charge

> Derive the expression for potential due to an electric dipole at any point P. Also find the electric field intensit. electric field intensity and in terms of dipole moment

3dn:

5.

An electric dipole is formed when two point chages of eggual magnitude but opposité Sign are seperated by a small distance.

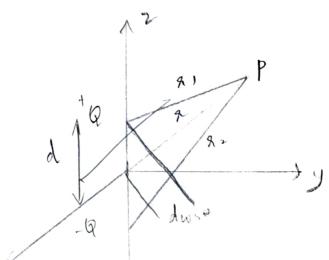
The potential at point p(2,0,0) 15  $V = \frac{G}{4\pi\epsilon_0} \left[ \frac{1}{9_1} - \frac{1}{9_2} \right] = \frac{G}{4\pi\epsilon_0} \left[ \frac{9_2 - 9_1}{9_1 9_2} \right]$ 

Where &, and & are distances between P and Q. it x>>d, 92-9, 2 dwso, 729, 29

eg (i) becomes. V = Q d wso ____ (a)

Since dosso = dar, d = daz is ye define

P = 9d - 0


MEENAKSHISUNDA TAND KODAMBAKKAM.

363, ARCOT KORD, KODANJEAKKAM, as V = P. ar/4 1190 22 The dipole moment p is directed from - Q to + Q If the dipôle center is not ort the origin, but r', eg @ becomes

$$V(x) = \frac{p \cdot (x - x_1)}{\sqrt{\pi x_0 |x - x_1|^5}}$$

The electric field due to the dipole with center at the oxigin

$$E = -\nabla V = -\left[\frac{\partial V}{\partial V} a_{Y} + \frac{1}{2} \frac{\partial V}{\partial \phi} a_{\phi}\right]$$



MEENAKSHI SUNDARABAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, KODAMBAKKAM, CHENNAI-600 024

2 marks

2.

 $\frac{3}{2}$ 

Electric field intensity.

The experienced by a unit the charge placed at that particular point Electric field intensity is a vector governity.

£ = F/9 luit: Nc-1 (09) Vm-1

Coulomb's law.

The force F that is experienced by a charges Q, and Qz is directly proportional to the product of two charges and inversely proportional to the product of two changes an Square of the distance between the 2 charges

k = 1 = 9×109 m/F E = 8.854 x10 12

Potential

Capability of charged lody to do work.

W = Work done

PRINCIPAL MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE 363, ARCOT ROAD, KODAMBAKKAM,

CHENNAI-600 024

Potential difference Amount of work done Dajunt tre to carry change I from one print electric field buit is wold.

Two sources of electro magnetic field:

* Electrical power supplier

* teleumnumications.

* Broadcasting antennas

* microwave ovens.

Gauss law

Total electric flux of closed surface = charge enclosed/ permitting

(i.e.) SE. do = 1 9.

PART- C

Determine the expression for electric field due to charge circular sing of radius & placed in my plane with center at origin having charge density of Pe c/m. Find E at (0,0,5) from the circular ring of charge with radius 3m bying in x = 0 plane with center and having Pe = 10 nc/m.

consider a charged circular ring of radius to placed in my plane with center at origin with charge density is PL

The point P is a perpendicular distance 2

from the sing. Consider a differential length dl.

The charge on it is da

do : Pr. dl

MEENAKSHI SUNDAKARADA REERIN S63, ARCOT ROAD, KODAMBAKKANI.

CHENNAI-600 024

de Pudlar Where R = distance from point P for d1, d1 = x4. dp R2= R1 + 22 while R can be divided into two components (ie) distance n in the direction of -do radiusy invaid. ii) distancez in direction of az is Zaz : P = - 8ar + zaz  $|R| = \sqrt{x^2 + z^2} = \sqrt{x^2 + z^2}$  $\vec{a_R} : \frac{\vec{R}}{|R|} = -8\vec{a_1} + 2\vec{a_2}$  $\frac{d\vec{t}}{d\vec{t}} = \frac{c_L dl}{4\pi c_0 (x^2 + z^2)} \times \frac{-9a_S^2 + za_2}{\sqrt{9^2 + z^2}}$ (-202 + 202) 4TTGo (8 +22) 1/2 neglecting and component, de = Pl.dl

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE

363, ARCOT ROAD, KODAMBAKKAM, P. dl

CHENNAI-600 024

41186 (72+22)\$\frac{1}{2}\$

$$= \int_{0}^{2\pi} \frac{P_{L} r d\phi}{4\pi \alpha_{0} (x^{2} + z^{2})^{3/2}} z . dz$$

$$= \int_{0}^{2\pi} \frac{P_{L} r d\phi}{4\pi \alpha_{0} (x^{2} + z^{2})^{3/2}} z . dz$$

$$= \int_{0}^{2\pi} \frac{P_{L} r d\phi}{4\pi \alpha_{0} (x^{2} + z^{2})^{3/2}} z . dz$$

$$= \int_{0}^{2\pi} \frac{P_{L} r d\phi}{4\pi \alpha_{0} (x^{2} + z^{2})^{3/2}} z . dz$$

h = radius of ring Z = perpendicular distance
This is elutric field at a point P(0,0, 2) due
to ele virular ring of radius & placed in

say plane.

PART-B.

1-

Point charges Q1 and Q2 are located at (0,1,1). If Q = 2n( . Find (0,-4,3)) and (0,1,1). If Q = 2n( . Find Q2 such that the force on test charge at (0,-3,4) has no z component.

$$\frac{2 \times 10^{-9} (0,1,1)}{4 \pi \alpha_0 (525)^3} + \frac{9 \times (0,-4,1)}{4 \pi \alpha_0 (525)^3}$$

$$E = 0 = \frac{1}{(52)^3} + \frac{3 \times 9 \times 9}{(52)^3} + \frac{1}{(52)^3}$$

$$= \frac{3 \times 9 \times 9}{(52)^3} = \frac{-2 \times 10^{-9}}{(52)^3}$$

$$= -2 \times 10^{-9} \times 125$$

$$= \frac{3 \times 2}{3 \times 2}$$

$$= -29.4 \ln C$$

Jum

PRINCIPAL

MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE

363, ARCOT ROAD, KODAMBAKKAM.

CHENNAI-600 024

### MEENAKSHI SUNDARARAJAN ENGINEERING COLLEGE CHENNAI - 24

# ACADEMIC PERFORMANCE REPORT: ODD SEMESTER 2018 -19

Parents/ Guardian are requested to examine this report and sign it and return to the tutor within Three days

NAME: Aishwa	mya.P	ROLL NO: 03
	U	
BRANCH: EEE	YFAR -IV	SFM· 7

S. No.	SUBJECT	IAT I	IAT II	IAT III	Model Exam
1.	.High Voltage Engineering	62	61	83	81
2.	Protection and Switchgear	74	66	90	90
3.	Special Electrical Machines	88	68	93	85
4.	Principles of Management	74	79	98	90
5.	FACTS / Biomedical Instrumentation	60	76	80	76
6.	Micro Electro Mechanical Systems/ Microcontroller Based System Design	72	60	80	71
7.	Power System Simulation Laboratory	93	93	94	91
8.	Comprehension	92	75	89	93
Attendance up to :		2117/18	25/8/18	22/9/18	3/10/18
No. of Working days :		30	55	78	86
No. of Days Absent :		02	02	03	03

## Signature With Remarks

IAT - I			
Good	V. (400d. Keep it up		Apullalan
∧0√e Class Teacher	MTHOD	Principal	Parent

	IAI	T - II	
Good.	Very Crood Koep it up	Æ.	O Dod
. Class Teacher	MHBDL	Principal	Parent

	IAT	- 111	
Class Teacher	V. Good M. Rul	Principal	Parent

			. 2.0
			6.
	MODEL EX	AMINATION	
Good.	Good.		
nome	M. Dad	de	P. Jag
Class Teacher	HOD	Principal	MEENAKSHI SUNDARARADAD, KOD AME
	7	71	WASHI SUNDARAMAD, KODA
		· ·	MEENING3, ARC CHENNEY